

## AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title                                     |   | Basic Mechanics                                                                                                                                                                                    |                                                   |                                                         |                                     |                                                       |                                                   |                                                                |                                    |
|--------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|-------------------------------------|-------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|------------------------------------|
| Course Code                                      |   | FİZ115                                                                                                                                                                                             |                                                   | Couse Level                                             |                                     | First Cycle (Bachelor's Degree)                       |                                                   |                                                                |                                    |
| ECTS Credit                                      | 3 | Workload                                                                                                                                                                                           | 81 (Hours)                                        | Theory                                                  | 2                                   | Practice                                              | 0                                                 | Laboratory                                                     | 0                                  |
| Objectives of the Course                         |   | to introduce Newton's motion laws and to apply them to various problems, to denote the relationship with work and energy and to establish the relationship with motion and force among nature laws |                                                   |                                                         |                                     |                                                       |                                                   |                                                                |                                    |
| Course Content                                   |   | Motion in one<br>Circular motio<br>rigid bodies, R<br>Kepler's laws.                                                                                                                               | dimension, la<br>n and other aj<br>colling motion | ws of motion<br>oplications of<br>and angular           | , Momentu<br>f Newton's<br>momentum | m and collisior<br>Laws, Work, k<br>n, Elasticity and | ns, thermodyn<br>inetic and pot<br>d vibration mo | namics, fluid mech<br>cential energy, Ro<br>otion, Gravitation | nanics,<br>station of<br>force and |
| Work Placement                                   |   | N/A                                                                                                                                                                                                |                                                   |                                                         |                                     |                                                       |                                                   |                                                                |                                    |
| Planned Learning Activities and Teaching Methods |   |                                                                                                                                                                                                    | Explanation                                       | Explanation (Presentation), Case Study, Problem Solving |                                     |                                                       |                                                   |                                                                |                                    |
| Name of Lecturer(s)                              |   | Lec. Onur GENÇ, Lec. Şerife Gökçe ÇALIŞKAN, Prof. Ethem AKTÜRK                                                                                                                                     |                                                   |                                                         |                                     |                                                       |                                                   |                                                                |                                    |

| Assessment Methods and Criteria |          |                |  |  |  |  |
|---------------------------------|----------|----------------|--|--|--|--|
| Method                          | Quantity | Percentage (%) |  |  |  |  |
| Midterm Examination             | 1        | 40             |  |  |  |  |
| Final Examination               | 1        | 70             |  |  |  |  |

## **Recommended or Required Reading**

| 1 | Üniversite Fiziği Cilt I, H.D.Young, R.A.Freedman                      |
|---|------------------------------------------------------------------------|
| 2 | Fen ve Mühendisler için Fizik 1 (Mekanik) , R.A. Serway, R.J. Beichner |
| 3 | Fiziğin Temelleri , David Halliday, Robert Resnick, and Pearl Walker   |

| Week | Weekly Detailed Course Contents |                                                               |  |  |  |  |
|------|---------------------------------|---------------------------------------------------------------|--|--|--|--|
| 1    | Theoretical                     | Physical quantities, vectors and scalars                      |  |  |  |  |
| 2    | Theoretical                     | Motion in one dimension                                       |  |  |  |  |
| 3    | Theoretical                     | Motion in two dimension                                       |  |  |  |  |
| 4    | Theoretical                     | Laws of motion and dynamics                                   |  |  |  |  |
| 5    | Theoretical                     | Laws of motion and dynamics                                   |  |  |  |  |
| 6    | Theoretical                     | Circular motion and other applications of Newton's Laws       |  |  |  |  |
| 7    | Theoretical                     | Work, kinetic and potential energy                            |  |  |  |  |
| 8    | Intermediate Exam               | Midterm Exam                                                  |  |  |  |  |
| 9    | Theoretical                     | Work, kinetic and potential energy                            |  |  |  |  |
| 10   | Theoretical                     | Linear momentum and collisions                                |  |  |  |  |
| 11   | Theoretical                     | Linear momentum and collisions                                |  |  |  |  |
| 12   | Theoretical                     | Rotation of rigid bodies, Rolling motion and angular momentum |  |  |  |  |
| 13   | Theoretical                     | Rotation of rigid bodies, Rolling motion and angular momentum |  |  |  |  |
| 14   | Theoretical                     | Elasticity and vibration motion                               |  |  |  |  |
| 15   | Theoretical                     | Gravitation force and Kepler's laws                           |  |  |  |  |

## **Workload Calculation**

| Activity                               | Quantity | Preparation | Duration | Total Workload |  |  |  |
|----------------------------------------|----------|-------------|----------|----------------|--|--|--|
| Lecture - Theory                       | 14       | 1           | 2        | 42             |  |  |  |
| Midterm Examination                    | 1        | 15          | 2        | 17             |  |  |  |
| Final Examination                      | 1        | 20          | 2        | 22             |  |  |  |
|                                        | 81       |             |          |                |  |  |  |
|                                        | 3        |             |          |                |  |  |  |
| 25 hour workload is accepted as 1 ECTS |          |             |          |                |  |  |  |

Learning Outcomes





| 2 |  |
|---|--|
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |

| Progra | amme Outcomes (Dairy Technology)                                                                                                                                                                     |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Having sufficient infrastructure in basic sciences and engineering subjects and ability to use the theoretical and applied info instantly in this field.                                             |
| 2      | Determining the modern techniques, tools and information technologies required for applications related with his field and ability to use them efficiently                                           |
| 3      | Ability for planning, projecting, and designing, following up, analyzing and finding target-driven solutions related with his field                                                                  |
| 4      | Ability to have professional ethic and awareness.                                                                                                                                                    |
| 5      | Ability to work, decide, express opinions orally and in written individually                                                                                                                         |
| 6      | Ability to participate team studies, taking responsibility, making leadership.                                                                                                                       |
| 7      | Ability to conceive Ataturk's principles and reforms, to communicate in Turkish and foreign language.                                                                                                |
| 8      | Ability to comprehend the necessity to learn for a life time, to monitor developments in science and technology and continuously renew himself.                                                      |
| 9      | Having sufficient level of information about production and quality control of milk and dairy products and also product development, increasing product quality and food security fields.            |
| 10     | Ability to detect, define, solve problems related with his field and to select and apply suitable methods and modeling techniques for this purpose.                                                  |
| 11     | To be conscious about workplace applications, worker health, work security and environment subjects, to have knowledge about legal results of the engineering applications related with his subject. |
|        |                                                                                                                                                                                                      |

## Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

|    | L1 | L2 | L3 | L4 | L5 | L6 |
|----|----|----|----|----|----|----|
| P1 | 5  | 5  | 5  | 5  | 5  | 5  |

