

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Thermodynamics							
Course Code	BSM331 C		e Level	First Cycle (I	First Cycle (Bachelor's Degree)		
ECTS Credit 3	Workload 74 (Hours) Theor	y 2	Practice	0	Laboratory	0
Objectives of the Course The aim of this is to provide systems.			standing and	application of the	ermodynamic	s laws in to the en	gineering
Course Content Basic concepts of thermood temperature concepts, firs processes, ideal gases, co open systems, second law heat engine, refrigerators, irreversibility, gas power c thermodynamics propertie		its, first law of ses, compress nd law of therr rators, heat pu ower cycles, O	thermodynam ibility factor, fi nodynamics, i mps, entropy, tto ve Diesel o	ics, phases of purst law of thermoreversible and irr reversible and irr reversible stead cycles, refrigeration	ire substance dynamics: a eversible pha y-flow work, on cycles, ga	es, phase changes oplication to closes ase changes, Carr reversible work an as vapor mixtures,	s and not cycle, id
Work Placement	N/A						
Planned Learning Activitie	s and Teaching Metho	ds Expla	nation (Prese	ntation), Problem	n Solving		
Name of Lecturer(s) Lec. Yüksel AYDOĞAN							

		ment Methods and Criteria			
Method Quantity Percer					
Midterm Examination	1	40			
Final Examination	1	70			

Recommended or Required Reading

1

Çengel, Y.A., M.A. Boles, 2007. Thermodynamics, an Engineering Approach Sixth Edition. Mc Graw Hill, Isbn: 978-007-8. Çengel, Y.A., M.A. Boles, 2008.

Week	Weekly Detailed Co	e Contents		
1	Theoretical	basic consepts of thermodynamics- Zeroth Law of thermodynamics		
2	Theoretical	Properties of pure substances		
3	Theoretical	First law of thermodynamics-closes systems, energy transfer by heat, work and mass		
4	Theoretical	First law of thermodynamics-open systems		
5	Theoretical	Second law of thermodynamics: heat engines, refrigerators		
6	Theoretical	Second law of thermodynamics: heat pumps, carnot principles		
7	Theoretical	Entropy		
8	Theoretical	Midterm exam		
9	Theoretical	Exergy		
10	Theoretical	Gas power cycles		
11	Theoretical	Refrigeration cycles		
12	Theoretical	Gas mixtures		
13	Theoretical	Gas-vapor mixtures		
14	Theoretical	Water vapor and thermodynamical properties		
15	Theoretical	Air conditionşng processes		
16	Theoretical	Final exam		

Workload Calculation				
Activity	Quantity	Preparatio	n Duration	Total Workload
Lecture - Theory	14	2	2	56
Midterm Examination	1	8	1	9
Final Examination	1	8	1	9
Total Workload (Hours)				
[Total Workload (Hours) / 25*] = ECTS				
*25 hour workload is accepted as 1 ECTS				

Learn	ing Outcomes
1	Understanding of basic definations and zeroth law of thermodynamics
2	Understanding of properties of pure substances, ideal gas eqution of state and ability to use the solving of technical issues.
3	Understanding of first law of thermodynamic and applying the first of thermodynamic to the closed and control volumes
4	Understanding of energy transfer by heat, work and mass and ability to solve technical problems.
5	Understanding of second law of thermodynamic and applying to the systems.

Programme Outcomes (Dairy Technology)

Flogi	anine Outcomes (Dairy Technology)
1	Having sufficient infrastructure in basic sciences and engineering subjects and ability to use the theoretical and applied info instantly in this field.
2	Determining the modern techniques, tools and information technologies required for applications related with his field and ability to use them efficiently
3	Ability for planning, projecting, and designing, following up, analyzing and finding target-driven solutions related with his field
4	Ability to have professional ethic and awareness.
5	Ability to work, decide, express opinions orally and in written individually
6	Ability to participate team studies, taking responsibility, making leadership.
7	Ability to conceive Ataturk's principles and reforms, to communicate in Turkish and foreign language.
8	Ability to comprehend the necessity to learn for a life time, to monitor developments in science and technology and continuously renew himself.
9	Having sufficient level of information about production and quality control of milk and dairy products and also product development, increasing product quality and food security fields.
10	Ability to detect, define, solve problems related with his field and to select and apply suitable methods and modeling techniques for this purpose.
11	To be conscious about workplace applications, worker health, work security and environment subjects, to have knowledge about legal results of the engineering applications related with his subject.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5

