

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Nuclear Medicine								
Course Code	TG204	Couse Le	Couse Level		Short Cycle (Associate's Degree)				
ECTS Credit 3	Workload 75 (Hou	rs) Theory	2	Practice	0	Laboratory	0		
Objectives of the Course This course is intended for students; Gamma Camera and PET in the classrooms and hospital setting to gain knowledge and skills related to CT imaging techniques									
Course Content Physics of nuclear medicine, radiation protection in SPECT and PET application and use of dosimetry, radiopharmaceuticals, Gamma Camera and PET / CT operating principles, Gamma cameras and PET / CT quality control methods, dose calibrators and quality control methods, bone scan, pulmonary perfusion / ventilation scintigraphy, endocrine and central nervous system scans, scans of the urogenital system, gastrointestinal system scans, heart scans and cardiac stress imaging protocols, Positron Emission Tomography (PET / CT) applications.						nd PET / / urogenita			
Work Placement	N/A								
Planned Learning Activities and Teaching Methods		Explanation	on (Presenta	ation), Demons	tration, Discu	ssion, Problem S	olving		
Name of Lecturer(s)	Assoc. Prof. Arzu CENO	SIZ							

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	40				
Final Examination	1	70				

Recommended or Required Reading

Physics in Nuclear Medicine (Simon R. Cherry, James A. Sorenson, Michael E. Phelps) Essentials of Nuclear Medicine Imaging (Fred A. Mettler, Milton J. Guiberteau)

Week	Weekly Detailed Course Contents					
1	Theoretical	Physics of Nuclear Medicine				
2	Theoretical	Biological Effects of Radiation, radiation protection and the use of SPECT and PET dosimeter				
3	Theoretical	radiopharmaceuticals				
4	Theoretical	Gamma Camera and PET / CT operating principles, Quality Control Tests				
5	Theoretical	Bone scintigraphy				
6	Theoretical	Endocrine and central nervous system scans				
7	Theoretical	Lung and heart scans				
8	Intermediate Exam	midterm				
10	Theoretical	Gastrointestinal scintigraphy				
11	Theoretical	Infection and tumor imaging scans				
12	Theoretical	PET-CT Patient Preparation				
13	Theoretical	PET-CT Clinical Practice				
14	Theoretical	PET-CT Clinical Practice				
15	Theoretical	To list the imaging devices used in nuclear medicine				

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	0	2	28		
Individual Work	5	5	1	30		
Midterm Examination	1	7	2	9		
Final Examination	1	7	1	8		
	75					
	3					
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes 1 Describe the basic concepts of Physics and Nuclear Medicine explains. 2 SPECT and PET apply the principles of radiation protection and dosimetry applications use correctly. 3 Radiopharmaceuticals used in the routine identifies the mechanisms. 4 For the gamma camera imaging and PET-CT device makes patient preparation. 5 Gamma Camera and PET-CT obtains the images and processes, evaluate the image quality. 6 Gamma camera, PET-CT and defines dose calibrator quality control tests and make

Identifies major system of the scintigraphic imaging indications and scintigraphic techniques defines and implements

Programme Outcomes (Medical Imaging Techniques)

7

- To be able to get information the working principles of Radiology, Nuclear Medicine and Radiotherapy devices, and distinguish their components, use these devices in accordance with operating instructions.
- 2 To be able to perform the procedures in accordance with the examination of Radiology and Nuclear Medicine imaging.
- 3 To be able to apply the radiotherapy treatment, planned by radiation physicist with instruction of radiotherapist.
- To be able to develop and perform the film printing of the images that obtained by imaging techniques of Radiology, Nuclear Medicine
- To be able to evaluate the images that obtained by imaging techniques of Radiology, Nuclear Medicine in terms of radiographic quality and takes the necessary measures.
- 6 To be able to know the medical and radiologic terminology, and pronounce and use them correctly
- To be able to take the necessary measures in accordance with the rules of Radiation safety and protection from radiation, and apply them.
- To be able to distinguish the anatomical structures on images, obtained by the conventional and cross-sectional imaging techniques of Radiology, Nuclear medicine.
- 9 To be able to communicate well with patient, their family and the hospital staff.
- To be able to move with own professional duties, powers and responsibilities of the consciousness and apply the rules of professional ethics.
- 11 To be able to adapt to a multi-disciplinary team work.
- 12 To be able to have a basic knowledge of human physiology.
- 13 To be able to distinguish anatomical structures.
- 14 To be able to establish a cause-and-effect relationship between events.
- 15 To be able to have the ability of analytical thinking and problem solving.
- 16 To be able to apply the basic principles of first aid.
- 17 It has basic knowledge about human anatomy
- Understanding the basic concepts and principles of physics while providing, in the medical field and in particular medical imaging students better understand the issues involving technical vocational courses
- OHS 'basic concepts; work accidents, occupational diseases, occupational physicians, occupational safety specialist, İSGB, OSGB, hazard classes, risk assessment, OHS employee representatives is
- 20 Have basic knowledge about basic medical practices and makes applications

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2:Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	L6	L7
P6	5		5				
P8		5					
P11				5			
P12						5	
P13					5		
P14							5

