

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Agricultural Microbiology								
Course Code	TBY307		Couse Level		First Cycle (Bachelor's Degree)			
ECTS Credit 3	Workload	70 (Hours)	Theory	2	Practice	0	Laboratory	0
Objectives of the Course To introduce microbiology an raise awareness about the in agriculture.								
Course Content Preparation of starter culture of bioinsecticides with agric					ation of nitroge	en fixating ba	acteria from soil, re	elationship
Work Placement N/A								
Planned Learning Activities and Teaching Methods Explanation (Presentation), Experiment, Demonstration				stration				
Name of Lecturer(s) Lec. Evrim ELÇİN								

Assessment Methods and Criteria				
Method	Quantity Pe			
Midterm Examination	1	40		
Final Examination	1	70		

Recommended or Required Reading

1 Agricultural Microbiology, A.Kadir HALKMAN, Ankara

Week	Weekly Detailed Cour	se Contents				
1	Theoretical	Use of starters in milk and dairy products				
2	Theoretical	Properties of lactic acid bacteria				
3	Theoretical	Starters used in dairy products				
4	Theoretical	Bacteriophage detection				
5	Theoretical	Symbiotic nitrogen detection				
6	Theoretical	PlantGrowthPromotingRhizobacteria (PGPR)				
7	Theoretical	Isolation of Rhizobium strains				
8	Intermediate Exam	Midterm Exam				
9	Theoretical	Application of biological fertilizer				
10	Theoretical	Selection of biological fertilizers and strains				
11	Theoretical	Nitrogen fixation and plant factors				
12	Theoretical	Bioinsecticide production				
13	Theoretical	Waste water treatment systems and application				
14	Theoretical	Single cell protein production				
15	Theoretical	Single cell protein production				
16	Final Exam	Final exam				

Workload Calculation					
Activity	Quantity	F	Preparation	Duration	Total Workload
Lecture - Theory	14		2	1	42
Lecture - Practice	10		1	1	20
Midterm Examination	1		3	1	4
Final Examination	1		3	1	4
	70				
[Total Workload (Hours) / 25*] = ECTS					3
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes

1 Relationship between milk and milk products

2	The relationship between nitrogen fixation and agriculture	
3	Bioinsecticide and agriculture are learned	
4	The damages of waste water to agriculture are learned	
5	THP production is learned	

Progr	ramme Outcomes (Agricultural Biotechnology)
1	To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology
2	To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications
3	To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems
4	To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.
5	To have the ability to analyze collected data and interpret the results.
6	To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely
7	To have the awareness of professional liabilities and ethics
8	To be able to follow current national and international problems

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	4	3	3	3	4
P2	3	3	2	5	5
P3	3	3	5	5 ¶	5
P4	2	2	2	2	4
P5	3	3	3	3	4
P6	3	3	3	4	3
P7	3	3	4	4	3
P8	3	3	3	3	3

