

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Proteomics						
Course Code	TBY424	Couse Level		First Cycle (Bachelor's Degree)			
ECTS Credit 3	Workload 74 (Hours)	Theory	2	Practice	0	Laboratory	0
Objectives of the Course	The aim of this course is to teach main concepts of Proteomic to students such as it is based on the proteome as a complete set of proteins produced by a given cell or organism under a defined set of conditions and provide a unique global perspective on how this molecules interact and cooperate to create and maintain a working biological system and applications of proteomics in other scientific fields						
Course Content	Transition from Genomic to proteomic analysis; Charact sequences and Proteomic; Usage of protein modification	Proteomic; erization te Structural P on in proteo	General Fea chnics that is roteome Ana m analysis; I	atures of Prote s used in prote alysis; Protein Functional Pro	ins; Purificatio comic analysis protein interacteome Analysi	n technics that is ; Analysis of prot ctions and protec is; Proteomic App	s used in tein omic; olications
Work Placement N/A							
Planned Learning Activities and Teaching Methods		Explanatio	n (Presentat	tion), Discussio	on, Individual S	Study	
Name of Lecturer(s) Lec. Evrim ELÇİN							

Assessment Methods and Criteria				
Method 0	Quantity			

Method	Quantity	Percentage	(%
Midterm Examination	1	30	
Final Examination	1	70	

Recommended or Required Reading

1 Principles of Proteomics, RM Twyman

- 2 Proteomik, Münir Tuncer, 2022, Palme Yayınevi
- 3 INTRODUCTION TO PROTEOMICS: Principles and Applications -Nawin Mishra, 2010, John Wiley & Sons, Inc.

Week	Weekly Detailed Course Contents					
1	Theoretical	From Genomics to Proteomics, Scope of proteomics				
2	Theoretical	General Features of Proteins: Protein structure and function				
3	Theoretical	Strategies for protein seperation (I): Principles of two-dimensional gel electrophoresis; two- dimensional gel electrophoresis in proteomics				
4	Theoretical	Strategies for protein seperation (II): Principles of liquid chromatography in proteomics; Multidimensional liquid chromatography				
5	Theoretical	Strategies for protein identification (I): Protein identification with antibodies; Determining protein sequences by chemical degradation				
6	Theoretical	Strategies for protein identification (II): Mass spectrometry in proteomics; Protein identification using data from mass spectrometry				
7	Theoretical	Strategies for protein quantitation: Quantitative proteomics with standard 2D gels; Quantitative proteomics with mass spectrometry				
8	Intermediate Exam	Midterm Exam				
9	Theoretical	Proteomics and the analysis of protein sequences, basic principles of protein sequence comparison				
10	Theoretical	Structural proteomics: The value of protein structure in proteomics; Techniques for solving protein structure; Comparing protein structure				
11	Theoretical	Interactions proteomics: Principles of protein-protein interaction analysis; Protein interaction maps; Proteins and tiny molecules				
12	Theoretical	Protein modification in proteomics: Phosphoproteomics, overwiev of protein phosphorylation				
13	Theoretical	Protein chips and functional proteomics				
14	Theoretical	Applications of proteomic: Proteomics and plant biotechnology, Pharmaceutical proteomics, disease diagnosis, drug development				
15	Final Exam	Final Exam				

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	- Theory 13 2		2	52	

Assignment	4		1	1	8	
Midterm Examination	1		6	1	7	
Final Examination	1		6	1	7	
Total Workload (Hours)						
[Total Workload (Hours) / 25*] = ECTS 3						
*25 hour workload is accepted as 1 ECTS						

Learn	ning Outcomes
1	To provide a unique global perspective on how this molecules interact and cooperate to create and maintain a working biological system
2	To provide information regarding the proteome which is a complete set of proteins produced by a given cell or organism under a defined set of conditions
3	To gain the principles of protein separation, identification and quantification methods
4	Proteomics and to provide its connection with agricultural production.
5	To understand the relations between experimental logic, analytical thinking, quantitative analysis and problem solving.

Programme Outcomes (Agricultural Biotechnology)

1	To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology	
2	To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications	
3	To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems	
4	To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.	
5	To have the ability to analyze collected data and interpret the results.	
6	To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely	
7	To have the awareness of professional liabilities and ethics	
8	To be able to follow current national and international problems	

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	4	4	4	5	5
P3	4	4	4	4	5
P4	4	4	4	4	5
P5	4	4	4	4	5
P6	2	2	2	2	5
P7	4	4	4	2	5
P8	4	4	4	4	5

