

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Environmental Biotechnol	ogy					
Course Code	TBY323 Couse		Couse Level		First Cycle (Bachelor's Degree)		
ECTS Credit 2	Workload 49 (Hours)) Theory	2	Practice	0	Laboratory	0
Objectives of the Course	It aims to teach the use of	biotechnolog	ical applicat	tions in solving	environment	al problems.	
Course Content Introduction to Environmenta technology and environmenta metal removal, Air pollution treatment and their use in ag treatment, the use of treated biological fertilizers, bioextra			ology, Micro mediation, iotechnolog agriculture,	oorganisms an Soil pollution a jical application	d technology, and phytorem ns used in wa	Microorganisms ediation, Solid was ste water and was	and aste astewater
Work Placement N/A							
Planned Learning Activities and Teaching Methods		Explanation	n (Presenta	tion), Discussi	on, Individual	Study	
Name of Lecturer(s)	Lec. Evrim ELÇİN						

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	40	
Final Examination	1	70	

Recommended or Required Reading

		R.K. Sinha, R. Sinha. Environmental Biotechnology, Aavishkar Publishers, India. 2008.2.Bitton G. Wastewater microbiology., John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.3.Glazer A.N., Nikaido H. Microbial Biotechnology, Cambridge University Press, 2007.
--	--	--

2 Ünyayar, A. 2018. Çevre Mikrobiyolojisi ve Biyoteknolojisi, Atlas Akademi.

Week	Weekly Detailed Cour	se Contents			
1	Theoretical	Introduction to Environmental Biotechnology			
2	Theoretical	Relationship between technology, environmental technology, environmental biotechnology			
3	Theoretical	Microorganisms and technology			
4	Theoretical	Metal removal by microorganisms			
5	Theoretical	Air pollution and phytoremediation			
6	Theoretical	Soil pollution and phytoremediation			
7	Theoretical	Treatment of solid waste and gaining them to agriculture			
8	Intermediate Exam	Midterm Exam			
9	Theoretical	Wastewater and biotechnological applications used in wastewater treatment			
10	Theoretical	Use of treated wastewater in agriculture			
11	Theoretical	Biogas production and agriculture			
12	Theoretical	Biological fertilizers			
13	Theoretical	Microbial fertilizers			
14	Theoretical	Biopesticides			
15	Theoretical	Bioextraction and Biomining			
16	Final Exam	Final exam			

Workload Calculation

Activity	ity Quantity Preparation		Duration	Total Workload
Lecture - Theory	14	1	2	42
Midterm Examination	1	2	1	3

	una a li a va	- a 1100
		FOIII

Final Examination	1	2	2	4
Total Workload (Hours)				49
[Total Workload (Hours) / 25*] = ECTS 2				2
*25 hour workload is accepted as 1 ECTS				

Lear	ning Outcomes	
1	Recognize the concepts of environment and environmental pollution	
2	Knows the properties of microorganisms used in biotechnology	
3	Knows phytoremediation of soil and air pollution	
4	Knows biogas production and its use in agriculture	
5	Knows the use of biotechnological applications in agriculture	

Programme Outcomes (Agricultural Biotechnology)

1	To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology
2	To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications
3	To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems
4	To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.
5	To have the ability to analyze collected data and interpret the results.
6	To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely
7	To have the awareness of professional liabilities and ethics
8	To be able to follow current national and international problems

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	3	4	5	3	5
P2	3	4	5	3	3
P3	3	5	5	2	3
P4	1	2	1	1	2
P5	3	2	3	2	3
P6	2	2	3	2	2
P7	4	2	2	2	2
P8	5	2	2	2	2