

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Enzymology						
Course Code TBY305		Couse Level First Cycle (Bachelor's Degree)		egree)			
ECTS Credit 3	Workload 79 (Hours)	Theory	2	Practice	0	Laboratory	0
Objectives of the Course	Giving general information a production and purification of properties						
Course Content	Introduction of enzyme and	historical u	ses of enzyr	nes. Production	on and prufic	cation of industrial	enzymes
Work Placement	N/A						
Planned Learning Activities	Explanation	on (Presenta	tion), Discussi	on, Problem	Solving		
Name of Lecturer(s) Lec. Zehra Burcu BAKI							

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	40				
Final Examination	1	40				
Assignment	1	20				

Reco	mmended or Required Reading
1	Kulkarni, N.S. Deshpande, M.S.,2007 : General Enzymology, Global Media, IND
2	Telefoncu, A, 1997: Enzimoloji, Türkiye
3	Nelson, D.L., Cox, M.M., 2013: Lehninger Principles of Biochemistry, Palme Publishing
4	Engel P.C., 1996: Enzymology, Academic Press
5	Suckling C.J., Gibson C.L., Pitt A.R., 1998: Enzyme Chemistry Impact and Applications, Blackie Academic and Professional
6	Copeland R.A., 2000: Enzymes: A practical introduction to structure, mechanism and data analysis, WILEY-VCH

Week	Weekly Detailed Course Contents						
1	Theoretical	Biology of enzymes and historical uses of enzymes					
2	Theoretical	The terms used in enzymology					
3	Theoretical	The classification and nomenclature of enzymes					
4	Theoretical	Control of enzyme activities					
5	Theoretical	Enzyme kinetics					
6	Theoretical	Enzyme sources: Microorganisms (Bacteria, fungi and yeast)					
7	Theoretical	Enzyme technology, Enzyme production methods					
8	Theoretical	Production of industrial enzymes by Recombinant DNA Technology					
9	Intermediate Exam	Midterm exam					
10	Theoretical	Enzyme isolation, purification and charaterization					
11	Theoretical	Enzyme isolation, purification and charaterization					
12	Theoretical	Enzyme immobilization					
13	Theoretical	Enzymes in food industry					
14	Theoretical	Enzymes obtained from extreme environmental					
15	Final Exam	Final exam					

Workload Calculation							
Activity	Quantity	Preparation	Duration	Total Workload			
Lecture - Theory	14	3	2	70			
Assignment	1	3	0	3			
Midterm Examination	1	2	1	3			

Final Examination	1		2	1	3	
			To	otal Workload (Hours)	79	
		[Total Workload (Hours) / 25*] = ECTS	3	
*25 hour workload is accepted as 1 ECTS						

Learn	ng Outcomes
1	Learn the structure and classification of enzymes
2	Learns the functioning of enzymes in living systems
2	
3	Learns the methods of determining enzyme activity
4	Learn the production, purification and characterization of enzymes
5	Learn industrial production methods of enzymes

Prog	ramme Outcomes (Agricultural Biotechnology)					
1	To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology					
2	To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications					
3	To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems					
4	To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.					
5	To have the ability to analyze collected data and interpret the results.					
6	To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely					
7	To have the awareness of professional liabilities and ethics					
8	To be able to follow current national and international problems					

Contri	bution	of Lea	rning (Outcon	nes to I	Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High
	L1	L2	L3	L4	L5	
P1	4	3	3	3	4	
P2	4	3	4	3	4	
P3	3	4	4	4	4	
P4	4	4	3	5	5	
P5	5	4	5	5	5	
P6	4	5	5	5	5	
P7	4	5	5	5	5	
P8	5	5	5	5	5	

