

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Genetically Mo	odified Organi	sms					
Course Code		TBY325		Couse Level		First Cycle (Bachelor's Degree)			
ECTS Credit	3	Workload	72 (Hours)	Theory	2	Practice	0	Laboratory	0
risks of GMOs			, national and	internati		ns in GMO pro	duction and to	ural production, p rade, GMO and b	
Course Conter	nt	To make the To prevent p To increase t Reducing the	st-harvest los products mor roducts from r the nutritive va	ses, e toleran educing alue of fo ides with	nt to factors suc soil fertility, oods, n harmful insec			salinity,	
Work Placeme	ent	N/A							
Planned Learn	ing Activities	and Teaching I	Methods	Explana	ation (Presenta	tion), Discussi	on, Case Stu	dy, Individual Stu	dy
Name of Lectu	ırer(s)	Assoc. Prof. E	mre SEVİNDİ	K					

Assessment Methods and Criteria		
Method	Quantity	Percentage (%)
Midterm Examination	1	40
Final Examination	1	70

Recor	mmended or Required Reading
1	Plant Biotechnology and Genetics: Principles, Techniques, and Applications
2	Molecular Biology, Nobel Academic and Publishing Ankara, 2012
3	Fundamentals of Molecular Genetics, Assoc. Prof. Dr. H. Ümit LÜLEYAP, Nobel Kitapevi, 2008

Week	Weekly Detailed Cour	se Contents				
1	Theoretical	Definition and Uses of GMO				
2	Theoretical	Agriculture of GMOs				
3	Theoretical	Benefits and Losses of GMO				
4	Theoretical	The importance of GMOs in the world and in Turkey				
5	Theoretical	Possible Risks of GMOs for Agricultural Areas and the Environment				
6	Theoretical	Gene Transfer				
7	Theoretical	Gene Transfer teqnique				
8	Intermediate Exam	Exam				
9	Theoretical	Gene Transfer in Plants				
10	Theoretical	Transgenic Plants				
11	Theoretical	Genes and Properties of Transgenic Plants				
12	Theoretical	Gene transfer in animals				
13	Theoretical	Transgenic Animals				
14	Theoretical	Cloning Vectors				
15	Final Exam	Exam				

Workload Calculation				
Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	2	2	56
Midterm Examination	1	7	1	8

Final Examination	1	7	1	8
		To	otal Workload (Hours)	72
		[Total Workload (Hours) / 25*] = ECTS	3
*25 hour workload is accepted as 1 ECTS				

Learn	ing Outcomes
1	Learns the definition of GMO and how it is used.
2	Learns the stages of GMO plant production.
3	The status of GMO plant production in the world and in our country
4	Know the vectors used for GMO
5	To know the GMO products in agriculture

Prog	ramme Outcomes (Agricultural Biotechnology)
1	To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology
2	To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications
3	To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems
4	To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.
5	To have the ability to analyze collected data and interpret the results.
6	To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely
7	To have the awareness of professional liabilities and ethics
8	To be able to follow current national and international problems

P1 3 P2 3	L2 4 4	L3 4	L4 3	L5 3	
P2 3	_		3	3	
-	4			٥	
		4	3	3	
P3 4	3	4	4	4	
P4 3	4	3	4	3	
P5 3	3	3	3	3	
P6 3	2	2	2	2	
P7 3	2	2	2	2	
P8 3	3	2	2	2	

