

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Code TBY304 Couse Level First Cycle (Bachelor's Degree) ECTS Credit 4 Workload 100 (Hours) Theory 2 Practice 0 Laboratory Objectives of the Course The goal of the course is to teach gene expression mechanisms of eukaryotes and prokaryotes. Gene expression in prokaryotes and eukaryotes; transcription, regulatory elements and transcription factors, mRNA processing, genetic code, translation and functional protein synthesis by post-translation and functional protein synthesis by post-translation Work Placement N/A	Course Title		Applied Molecular Biology II								
Objectives of the Course The goal of the course is to teach gene expression mechanisms of eukaryotes and prokaryotes. Course Content Gene expression in prokaryotes and eukaryotes; transcription, regulatory elements and transcription factors, mRNA processing, genetic code, translation and functional protein synthesis by post-translations Work Placement N/A	Course Code		TBY304		Couse Level		First Cycle (Bachelor's Degree)				
Course ContentGene expression in prokaryotes and eukaryotes; transcription, regulatory elements and transcription factors, mRNA processing, genetic code, translation and functional protein synthesis by post-transla modificationsWork PlacementN/A	ECTS Credit	4	Workload	100 <i>(Hours)</i>	Theory		2	Practice	0	Laboratory	2
factors, mRNA processing, genetic code, translation and functional protein synthesis by post-translation Work Placement N/A	Objectives of the Course The goal of the course is t			e course is to	teach gei	ne e	xpression i	mechanisms	of eukaryotes	and prokaryotes.	
	Course Content		factors, mRN/								
	Work Placement		N/A								
Planned Learning Activities and Teaching Methods Explanation (Presentation), Experiment, Discussion, Individual Study	Planned Learning Activities and Teaching Methods		Explanat	tion	(Presentati	on), Experin	nent, Discussio	on, Individual Stud	ły		
Name of Lecturer(s) Assoc. Prof. Emre SEVINDIK	Name of Lecturer(s)		Assoc. Prof. E	Emre SEVİNDİ	ίκ						

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Final Examination	1	110

Recommended or Required Reading

1	Moleküler Biyoloji (Protein Sentezi ve Yıkımı). Ed: Ahmet Yıldırım, Fevzi Bardakçı, Mehmet Karataş, Bahattin Tanyolaç. NOBEL Kitabevi
2	Moleküler Biyoloji. Nihat Dilsiz. Palme Yayıncılık.
3	Genes VIII, Benjamin Lewin, New Jersey: Prentice- Hall, 2004
4	Molecular Biology of the Gene, James D. Watson, Tania A. Baker, Stephen P. Bell , Alexander Gann , Michael Levine , Richard Losick, Benjamin Cummings Pub Co., San Francisco, 2003.

Week Weekly Detailed Course Contents 1 Theoretical Gene expression in prokaryotes Laboratory Introduction to Molecular laboratory **Preparation Work** Preparing presentation from textbooks of and internet 2 Theoretical Gene expression in eukaryotes Laboratory Molecular markers **Preparation Work** Preparing presentation from textbooks of and internet 3 Theoretical Transcription in prokaryotes, its activation and repression and transcription factors Laboratory DNA extractions and cloning by PCR **Preparation Work** Preparing presentation from textbooks of and internet 4 Theoretical Transcription in prokaryotes, its activation and repression and transcription factors Laboratory Running the PCR product on the gel and the process after **Preparation Work** Preparing presentation from textbooks of and internet 5 Theoretical Transcription in eukaryotes, its activation and repression and transcription factors Laboratory western blot, northern blot Southern Blot analysis **Preparation Work** Preparing presentation from textbooks of and internet 6 Theoretical Transcription in eukaryotes, its activation and repression and transcription factors Laboratory **RNA** isolations Preparation Work Preparing presentation from textbooks of and internet 7 Theoretical RNA processing Laboratory Preparation of cDNA library Preparation Work Preparing presentation from textbooks of and internet 8 Theoretical Preparing presentation from textbooks of and internet 9 Theoretical mRNA Stability and Localization Laboratory Real-time PCR **Preparation Work** Preparing presentation from textbooks of and internet 10 Theoretical **DNA** methylation Laboratory Gradient PCR analysis

10	Preparation Work	Genomic imprinting
11	Theoretical	Genetic code
	Laboratory	DNA sequence analysis
	Preparation Work	Preparing presentation from textbooks of and internet
12	Theoretical	Next generation DNA sequencing
	Laboratory	DNA microarray analysis
	Preparation Work	Next generation DNA sequencing
13	Theoretical	Translation in eukaryotes, structure and function of tRNA, ribosomes and regulatory proteins
	Laboratory	Western Blot and zymogram
	Preparation Work	Preparing presentation from textbooks of and internet
14	Theoretical	The processing is required form a functional protein after translation
	Laboratory	Post-translational modifications
	Preparation Work	Preparing presentation from textbooks of and internet
15	Final Exam	Final Exam

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	15	2	2	60
Laboratory	14	1	1	28
Final Examination	1	11	1	12
		Тс	otal Workload (Hours)	100
[Total Workload (Hours) / 25*] = ECTS				
*25 hour workload is accepted as 1 ECTS				

ur workload is accepted as

Learning Outcomes

1	At the end of the course students should be able to; know mechanisms of transcription, gene regulation, RNA processing and translation in bacteria & eukaryotes
2	explain how recent genomics and functional genomics advances are altering our views
3	apply molecular knowledge to understand and hypothesize about specific complex systems such as the HIV retrovirus and human disease states with underlying molecular dysfunction
4	interpret the results of experiments using standard molecular techniques such as gel shift, transcription run-on assay, linker scanning promoter analysis, etc
5	explain how classic experiments have led to our current understandings about DNA replication, recombination, transcription

Programme Outcomes (Agricultural Biotechnology)

-	
1	To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology
2	To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications
3	To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems
4	To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.
5	To have the ability to analyze collected data and interpret the results.
6	To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely
7	To have the awareness of professional liabilities and ethics
8	To be able to follow current national and international problems

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	3	3	3	3	3
P2	3	3	3	3	3
P3	5	5	5	5	5
P4	5	5	5	5	5
P5	4	4	4	4	4
P6	3	3	3	3	3
P7	3	3	3	3	3

Course	Informat	ion Form
Course		

P8	4	4	4	4	4

