

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Population Ge	enetics						
Course Code	TBY314			rel	First Cycle (Bachelor's Degree)			
ECTS Credit 3	Workload	70 (Hours)	Theory	2	Practice	0	Laboratory	0
Objectives of the Course In this course, students are going to learn the principles of population genetics and it is aimed to discuss the development and progression of important characters in populations.						o discuss		
Course Content Gene frequency determination in randomly matched populations and Hardy Weinberg Law, Graphi representation of populations, Multi allelicity, blood groups, Mutations, genetic migration, selection, heredity.								
Work Placement	N/A							
Planned Learning Activities and Teaching Methods Explanation (Presentation), Demonstration, Discussion								
Name of Lecturer(s)	Lec. Zühal GÜ	INDÜZ						

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	40			
Final Examination	1	70			

Recommended or Required Reading

Warren J. Ewens . (2004). Mathematical Population Genetics. Springer; 2nd edition Daniel L. Harti and Andrew G. Clark. (2006). Principles of population Genetics. Sinauer Associates.; 4th edition Matthew Hamilton. (2009). Population Genetics. Wiley-Blackwell, 1 edition Ching Chun Li.. (1968). Population Genetics. University of Chicago Press; 6th edition

Week	Weekly Detailed Cour	e Contents					
1	Theoretical	The frequency determination in random-mating population and Hardy-Weinberg equilibrium					
2	Theoretical	The graphic display of populations					
3	Theoretical	The relationship between dominancy and recessive, Synder ratio, co-dominancy					
4	Theoretical	Multiple alleles, blood types					
5	Theoretical	Selfing populations					
6	Theoretical	Selfing populations and their matrix investigation					
7	Intermediate Exam	Exam					
8	Theoretical	Sex-linked inheritance					
9	Theoretical	Two-pairs of genes					
10	Theoretical	Mutation					
11	Theoretical	Migration					
12	Theoretical	Selection					
13	Theoretical	Genetic drift					
14	Theoretical	Inbreeding					
	Final Exam	Final Exam					

Workload Calculation						
Activity	Quantity	P	Preparation Duration		Total Workload	
Lecture - Theory	14		1	2		42
Assignment	10		1	1		20
Midterm Examination	1		3	1		4
Final Examination	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3	1		4
Total Workload (Hours)						70
[Total Workload (Hours) / 25*] = ECTS					3	
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes

1 To be able to define population genetics term

2	To be able to apply Hardy Weinberg equlibrium			
3	To be able to define self-mating populations and distinguish their self-mating matrix			
4	To distinguish sex-linked inheritance			
5	To be able to discuss the development and progression of important characters in populations			

Prog	ramme Outcomes (Agricultural Biotechnology)
1	To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology
2	To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications
3	To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems
4	To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.
5	To have the ability to analyze collected data and interpret the results.
6	To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely
7	To have the awareness of professional liabilities and ethics
8	To be able to follow current national and international problems

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	5	4	4	4
P2	3	3	4	4	5
P3	3	3	4	4	3
P4	4	4	4	4	4
P5	3	3	3	3	3
P6	3	3	2	2	2
P7	3	2	2	2	2
P8	3	2	2	2	2

