

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Recombinant DNA Technology I							
Course Code		TBY401		Couse Level		First Cycle (Bachelor's Degree)			
ECTS Credit	4	Workload	100 <i>(Hours)</i>	Theory	2	Practice	0	Laboratory	2
Objectives of the Course		Aim of this Course is to familiarize students with the most frequently used methods in Recombinant DNA Technology and Genetic Engineering from both a theoretical and experimental point of view							
Course Content		Used in Reco DNA Cutting I	mbinant DNA Enzymes, Cloi	Technology, hing and Exp	Polymeras ression Ve		tion, Cloning Gene Trans	Areas, Molecular N g and Expression of fer, DNA Gel	
Work Placement N/A									
Planned Learning Activities and Teaching Methods		Explanation	(Presentat	tion), Experime	ent, Discuss	ion			
Name of Lecturer(s)		Lec. Murat Ke	mal AV/CI						

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	40				
Final Examination	1	70				

Recommended or Required Reading

1	Principles of Gene Manipulation and Genomics, Seventh Edition, Sandy B., Primrose, Richard M. Twyman, Madlen, MA; Oxford: Blackwell Pub., (2013)
2	Gene Cloning and DNA Analysis An Introduction Fourth Edition T.A Brown, Wiley-Blackwell Pub. (2020)
3	An Introduction to Genetic Engineering, Third Edition, Desmond S. T. Nicholl Cambridge University Press (2008)

Week	Weekly Detailed Course Contents					
1	Theoretical	Introduction and some basic concepts				
	Preparation Work	Having knowledge from source books				
2	Theoretical	Recombinant DNA Technology and Genetic Engineering and Their Applications				
	Preparation Work	Having knowledge from source books				
3	Theoretical	Polymerase Chain Reaction				
	Preparation Work	Having knowledge from source books				
4	Theoretical Enzymes used in gene cloning					
	Preparation Work	Having knowledge from source books				
5	Theoretical	Vectors used in gene cloning				
	Preparation Work	Having knowledge from source books				
6	Theoretical	Gene cloning				
	Preparation Work	Having knowledge from source books				
7	Theoretical	Gel Elecrophoresis of DNA				
	Preparation Work	Having knowledge from source books				
8	Intermediate Exam	Midterm exam				
9	Theoretical	Gene Transfer Techniques 1				
	Preparation Work	Having knowledge from source books				
10	Theoretical	Gene Transfer Techniques 2				
	Preparation Work	Having knowledge from source books				
11	Theoretical	DNA Sequence Analysis 1				
	Preparation Work	Having knowledge from source books				
12	Theoretical	DNA Sequence Analysis 2				
	Preparation Work	Having knowledge from source books				
13	Theoretical	Gene expressions and its vectors 1				
	Preparation Work	Having knowledge from source books				
14	Theoretical	Gene expressions and its vectors 1				

14	Preparation Work	Having knowledge from source books
15	Preparation Work	Having knowledge from source books
	Final Exam	Final exam

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	13	1	2	39		
Laboratory	13	1	2	39		
Midterm Examination	1	10	1	11		
Final Examination	1	10	1	11		
Total Workload (Hours)						
[Total Workload (Hours) / 25*] = ECTS						
*25 hour workload is accepted as 1 ECTS						

hour workload is accepted as 1 ECTS

Learning Outcomes

1	To learn the application areas of basic analysis techniques used in Molecular Biology in Recombinant DNA Technology.
2	To know the historical progress of discovery and use of DNA, RNA and protein
3	At the end of this course students learn basic methods of gene cloning and manipulation for protein expression
4	At the end of this course students learn how recombinant DNA technology is used in genetic engineering to modify prokaryotic and eukaryotic cells
5	Students gain information about practical and biotechnological applications of recombinant DNA technology

Programme Outcomes (Agricultural Biotechnology)

1	To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology				
2	To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications				
3	To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems				
4	To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.				
5 To have the ability to analyze collected data and interpret the results.					
6	To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely				
7	To have the awareness of professional liabilities and ethics				
8	To be able to follow current national and international problems				

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	3	5	5	5
P2	4	4	4	5	5
P3	5	4	5	5	5
P4	5	5	5	5	5
P5	4	5	5	5	5
P6	3	5	4	4	4
P7	4	5	3	4	5
P8	5	5	4	5	5

