

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Molecular Laboratory Techniques I							
Course Code	TBY405	TBY405		Couse Level		First Cycle (Bachelor's Degree)		
ECTS Credit 4	Workload	97 (Hours)	Theory	2	Practice	0	Laboratory	2
Objectives of the Course The aim of this course is to biotechnology.			introduce a c	letailed des	scription of the	molecular m	ethods used in	
Course Content The contents of this course DNA isolation in plants, dete polyacrilamide gel, the use of and practices used in hortic quantitative determination of evaluation of the dendogram			ermination of of biochemic ulture breedi f gene expre	DNA quar al markers ng, determ	ntity and quality in breeding, h ination of gen	/, PCR, prepa ybridization-b expression (or expression)	aration of agarose based molecular t cDNA-AFLP, micr	e and echniques oarray),
Work Placement N/A								
Planned Learning Activities and Teaching Methods		Explanation	(Presenta	tion), Experime	ent, Individua	l Study		
Name of Lecturer(s) Lec. Ferhat KİREMİT								

Assessment Methods and Criteria								
Method	Quantity	Percentage (%)						
Midterm Examination	1	40						
Final Examination	1	70						

Recommended or Required Reading

1 Molecular Markers in Plants Robert J. Henry

Week	Weekly Detailed Cour	rse Contents					
1	Theoretical	Introduction to molecular genetic lab, solutions preparation methods					
	Practice	Introduction to molecular genetic lab, solutions preparation methods					
	Preparation Work	Reading course-related information from different sources					
2	Theoretical						
	Practice						
	Preparation Work	Reading course-related information from different sources					
3	Theoretical	Determination of DNA quantity and quality					
	Practice	Determination of DNA quantity and quality					
	Preparation Work	Reading course-related information from different sources					
4	Theoretical	Polymerase chain reaction (PCR)					
	Practice	Polymerase chain reaction (PCR)					
	Preparation Work	Reading course-related information from different sources					
5	Theoretical	Preparation of agarose and polyacrilamide gel					
	Practice	Preparation of agarose and polyacrilamide gel					
	Preparation Work	Reading course-related information from different sources					
6	Theoretical	The use of biochemical markers in breeding					
	Practice	The use of biochemical markers in breeding					
	Preparation Work	Reading course-related information from different sources					
7	Intermediate Exam	Midterm					
8	Theoretical	Hybridization-based molecular techniques and practices used in Horticulture breeding (RFLP)					
	Practice	Hybridization-based molecular techniques and practices used in Horticulture breeding (RFLP)					
	Preparation Work	Reading course-related information from different sources					
9	Theoretical	PCR-based molecular breeding techniques and practices used in biotechnology (RAPD, ISSR)					
	Practice	PCR-based molecular breeding techniques and practices used in biotechnology (RAPD, ISSR)					
	Preparation Work	Reading course-related information from different sources					
10	Theoretical	PCR-based molecular breeding techniques and practices used in biotechnology (SSR, SRAP)					
	Practice	PCR-based molecular breeding techniques and practices used in biotechnology (SSR, SRAP)					

10	Preparation Work	Reading course-related information from different sources					
11	Theoretical	PCR-based molecular breeding techniques and practices used in biotechnology (AFLP, CAPs)					
	Practice	PCR-based molecular breeding techniques and practices used in biotechnology (AFLP, CAPs)					
	Preparation Work	Reading course-related information from different sources					
12	Theoretical	Determination of gen expression (cDNA-AFLP, microarray)					
	Practice	Determination of gen expression (cDNA-AFLP, microarray)					
	Preparation Work	Reading course-related information from different sources					
13	Theoretical	Quantitative determination of gene expression (Real Time PCR)					
	Practice	Quantitative determination of gene expression (Real Time PCR)					
	Preparation Work	Reading course-related information from different sources					
14	Theoretical	Similarity index, the creation and evaluation of the dendograms					
	Practice	Similarity index, the creation and evaluation of the dendograms					
	Preparation Work Reading course-related information from different sources						
15	Theoretical	General review					
16	Final Exam	Final exam					

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	2	2	56	
Lecture - Practice	3	1	2	9	
Laboratory	12	1	1	24	
Midterm Examination	1	3	1	4	
Final Examination	1	3	1	4	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS					

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

	-						
1	Have knowledge about molecular biology laboratory and equipment						
2	Have knowledge about methods and techniques used in molecular biology						
3	Marker types and analysis are learned						
4	Nucleus, chloroplast and mitochondria gene regions are learned						
5	Learning bioinformatics programs used in marker technique						

Programme Outcomes (Agricultural Biotechnology)

1	To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology					
2	To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications					
3	To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems					
4	To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.					
5	To have the ability to analyze collected data and interpret the results.					
6	To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely					
7	To have the awareness of professional liabilities and ethics					
8	To be able to follow current national and international problems					

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	4	4	4	5	5
P2	4	4	4	5	5
P3	5	5	4	5	4
P4	5	5	4	5	5
P5	4	4	3	3	3
P6	3	3	3	2	3

P7	2	2	2	2	3
P8	2	2	2	2	2