

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Course Title Protein Analysis Methods					
Course Code	e Code TBY415		First Cycle (Bachelor's Degree)			
ECTS Credit 4	Workload 104 (Hours)	Theory 2	Practice 0	Laboratory 2		
Objectives of the Course Protein purification is a series of processes intended to isolate one or a few proteins from a complex mixture, usually cells, tissues or whole organisms. Protein purification is vital for the characterization of the function, structure and interactions of the protein of interest.						
Course Content Protein purification is a series of processes intended to isolate one or a few proteins from a complex mixture, usually cells, tissues or whole organisms. Protein purification is vital for the characterization of the function, structure and interactions of the protein of interest.						
Work Placement	N/A					
Planned Learning Activities	and Teaching Methods	Explanation (Presenta	tion), Experiment			
Name of Lecturer(s)						

Assessment Methods and Criteria				
Method	Quantity	Percentage (%)		
Midterm Examination	1	40		
Final Examination	1	70		

Recommended or Required Reading

1 Lehninger Principles of Biochemistry

Week	Weekly Detailed Course Contents					
1	Theoretical	Homojenisation				
2	Practice	Homojenisation				
3	Theoretical	Santrifuge				
4	Practice	Santrifuge				
5	Theoretical	Dialysis				
6	Practice	dialysis				
7	Intermediate Exam	Exam				
8	Theoretical	Gel Filtration				
9	Theoretical	Protein Structure				
10	Theoretical	PAGE				
11	Practice	PAGE				
12	Theoretical	SDS-PAGE				
13	Practice	SDS-PAGE				
14	Theoretical	Protein staining on PAGE and SDS-PAGE gels				

Workload Calculation					
Activity	Quantity		Preparation	Duration	Total Workload
Lecture - Theory	14		2	2	56
Lecture - Practice	14		1	2	42
Midterm Examination	1		2	1	3
Final Examination	1		2	1	3
Total Workload (Hours)					104
[Total Workload (Hours) / 25*] = ECTS				4	
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes				
1	Know the principles of homogenization			
2	Knows centrifugation			
3	Knows dialysis and gel filtration			

Know the structure of proteins
 Knows PAGE Electrophoresis

Programme Outcomes (Agricultural Biotechnology)					
1	To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology				
2	To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications				
3	To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems				
4	To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.				
5	To have the ability to analyze collected data and interpret the results.				
6	To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely				
7	To have the awareness of professional liabilities and ethics				
8	To be able to follow current national and international problems				

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	5	5	5	5	5
P3	3	3	3	3	3
P4	5	5	5	5	5
P5	5	5	5	5	5
P6	4	4	4	4	4
P7	5	5	5	5	5
P8	4	4	4	4	4

