

## AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title Introductio to Protein Structure Modeling |                                                                                                                                                                                                                                                               |                                                                                                           |                                                                              |                                                                                                                  |                                                                                                |                                                                                                                                       |                                                  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Course Code                                            | TBY419                                                                                                                                                                                                                                                        | Couse Leve                                                                                                | Couse Level                                                                  |                                                                                                                  | First Cycle (Bachelor's Degree)                                                                |                                                                                                                                       |                                                  |  |
| ECTS Credit 4                                          | Workload 105 (Hour                                                                                                                                                                                                                                            | s) Theory                                                                                                 | 2                                                                            | Practice                                                                                                         | 0                                                                                              | Laboratory                                                                                                                            | 2                                                |  |
| Objectives of the Course                               | Proteins are one of the n<br>proteins are synthesized<br>structural and functional of<br>of similar and different fea<br>data for protein structures<br>aimed that student will be<br>This course aimed to pro-<br>information of proteins to<br>the subject. | directly accordi<br>comparation of<br>atures amoung<br>and functions<br>taught three-d<br>vide the studen | ng to thei<br>proteins p<br>various o<br>are given<br>limensiona<br>nts some | r genetic inform<br>provides some in<br>rganisms. The t<br>to students in s<br>al protein model<br>knowledge and | ation of eve<br>mportant kno<br>pasic inform<br>several cour<br>ling and cor<br>skills for tra | ry living things.Thu<br>owledge for unders<br>ation and bioinforn<br>ses. In this course<br>nparative structure<br>nsferring of basic | us,<br>standing<br>natics<br>, it is<br>analysis |  |
| Course Content                                         | Physical and biochemical<br>function, characteristics of<br>structures, roles/effects of<br>for three-dimensional pro<br>information for molecular<br>experimental methods an<br>sequence to the 3D struc                                                     | f protein struct<br>f these special<br>tein modelling,<br>modelling, pres<br>d technics for e             | ures and f<br>formation<br>internet-b<br>sentation<br>exploration            | functions, motifs<br>s in protein stru<br>ased and comp<br>approaches of<br>n a protein 3D s                     | s-signatures<br>cture and fu<br>utere-based<br>3D protein s<br>tructure, pro                   | and patterns in pr<br>inction, bioinforma<br>d programmes, bas<br>structures and surf<br>ocesses leading fro                          | otein<br>tik tools<br>sic<br>aces,               |  |
| Work Placement                                         | N/A                                                                                                                                                                                                                                                           |                                                                                                           |                                                                              |                                                                                                                  |                                                                                                |                                                                                                                                       |                                                  |  |
| Planned Learning Activit                               | ties and Teaching Methods                                                                                                                                                                                                                                     | Explanation<br>Study                                                                                      | (Present                                                                     | ation), Demonst                                                                                                  | ration, Proje                                                                                  | ect Based Study, I                                                                                                                    | ndividual                                        |  |
| Nome of Lecturer(a)                                    |                                                                                                                                                                                                                                                               |                                                                                                           |                                                                              |                                                                                                                  |                                                                                                |                                                                                                                                       |                                                  |  |

```
Name of Lecturer(s)
```

# Assessment Methods and Criteria

| Method              |  | Quantity | Percentage (%) |  |
|---------------------|--|----------|----------------|--|
| Midterm Examination |  | 1        | 30             |  |
| Final Examination   |  | 1        | 50             |  |
| Practice            |  | 1        | 20             |  |

## **Recommended or Required Reading**

| 1 | 1- Molecular Modelling, Second Edition, Andrew R. Leach                                                                                                                                                                    |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | 2- Biyokimya İlkeleri – Lehninger, ISBN: 975-8982-18-4, Yazar: David L. Nelson , Micheal M. Cox, Çeviri Editörü: Nedret Kılıç                                                                                              |
| 3 | 3- Harper'ın Biyokimyası, Yazar: Murray, Bender, Weil, Botham, Kennely, Rodwell, Çevirmen: Prof. Dr. Gül Güner Akdoğan, Prof.Dr. Biltan Ersöz, Prof. Dr. Nevbahar Turgan, Yayınevi: Nobel Tip Kitabevi ISBN: 9786053351542 |
| 4 | 4- Homology Modeling: Methods and Protocols, Editörler: Andrew J. W. Orry, Ruben Abagyan, Yayıncı Humana Press, 2012 ISBN 1617795879, 9781617795879                                                                        |
| 5 | 5- In-Silico Analysis And Homology Modeling Proteins With MYMIV, Yazar: Navneet Kumar Yadav, Editör: Navneet Kumar Yadav, Yadav, Yayıncı: Lap Lambert Academic Publishing GmbH KG, 2012 ISBN 3846549541, 9783846549544     |

| Week | Weekly Detailed Co | urse Contents                                                     |  |  |  |
|------|--------------------|-------------------------------------------------------------------|--|--|--|
| 1    | Theoretical        | Basic concepts in Molecular Modelling                             |  |  |  |
| 2    | Theoretical        | Amino acid Biochmistry and Radical groups                         |  |  |  |
| 3    | Theoretical        | Protein Biochemistry and Special formations                       |  |  |  |
| 4    | Theoretical        | Empirical Force Fields Models                                     |  |  |  |
| 5    | Theoretical        | Biochemical bonds in Protein structure analysis                   |  |  |  |
| 6    | Theoretical        | İdeal protein structures and Energy Minimisation Princibles       |  |  |  |
| 7    | Practice           | Bioinformatic resources in Protein structure Modelling            |  |  |  |
| 8    | Practice           | Computer-based Protein 3D structure analysis Programmes           |  |  |  |
| 9    | Practice           | Integration of internet-based tools and computer-based programmes |  |  |  |
| 10   | Practice           | Methods and Technics used in protein structure analysis           |  |  |  |
| 11   | Practice           | Comparative analysis from sequence to 3D structure                |  |  |  |
| 12   | Practice           | Mutations and comparative analysis                                |  |  |  |
| 13   | Practice           | Associating of homology modelling and wet-lab analysis            |  |  |  |



14 Theoretical General overview

#### Workload Calculation

| WORKIDAU GAICUIATION |          |  |             |          |                |
|----------------------|----------|--|-------------|----------|----------------|
| Activity             | Quantity |  | Preparation | Duration | Total Workload |
| Lecture - Theory     | 14       |  | 1           | 2        | 42             |
| Lecture - Practice   | 7        |  | 2           | 2        | 28             |
| Assignment           | 7        |  | 2           | 2        | 28             |
| Midterm Examination  | 1        |  | 2           | 1        | 3              |
| Final Examination    | 1        |  | 3           | 1        | 4              |
|                      | 105      |  |             |          |                |
|                      | 4        |  |             |          |                |

\*25 hour workload is accepted as 1 ECTS

### Learning Outcomes

| -                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------|
| 1. Learn Amino acid structure, radical groups and their roles in protein structures.                                              |
| 2. Learn protein structure, the special formations in this structure and obtain some important information to analys proteins.    |
| 3. Learn some biochemical concepts important for protein structure and function.                                                  |
| 4. Learn protein-oriented bioinformatik tools and PC-based programmes.                                                            |
| 5. Obtain general overview and experience to transfer designs from bioinformatic tools and in silico analysis to wet-lab studies. |
| 6. Able to analize and evaluate the effects of a mutation to protein structure and function or design such a scenario.            |
|                                                                                                                                   |

### Programme Outcomes (Agricultural Biotechnology)

| 1 | To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology                                                                                                                                 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications                                                                                                    |
| 3 | To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems                                                              |
| 4 | To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.                                                                                                                                            |
| 5 | To have the ability to analyze collected data and interpret the results.                                                                                                                                                                 |
| 6 | To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely |
| 7 | To have the awareness of professional liabilities and ethics                                                                                                                                                                             |
| 8 | To be able to follow current national and international problems                                                                                                                                                                         |

# Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

|    | L1 | L2 | L3 | L4 | L5 | L6 |
|----|----|----|----|----|----|----|
| P1 | 4  | 4  | 2  | 2  | 5  | 5  |
| P2 | 4  | 4  | 3  | 5  | 5  | 5  |
| P3 | 3  | 3  | 3  | 3  | 3  | 3  |
| P4 | 5  | 5  | 3  | 5  | 5  | 5  |
| P5 | 2  | 3  | 3  | 5  | 5  | 5  |
| P6 | 2  | 2  | 2  | 4  | 4  | 4  |
| P7 | 2  | 3  | 3  | 4  | 4  | 4  |
| P8 | 2  | 3  | 3  | 5  | 5  | 5  |