

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	urse Title DNA and Rna Based Applications							
Course Code	TBY416	Couse Leve	Couse Level		First Cycle (Bachelor's Degree)			
ECTS Credit 4	Workload 100 (Hou	rs) Theory	2	Practice	0	Laboratory	2	
Objectives of the Course	nbinant Technol	ogies, meth	ods and strate	egies by focus	. The aim of this on this of this of this of the sing DNA and RN or agricultural			
Course Content DNA and RNA structure, DNA charachteristics of DNA-RNA applications, DNA-RNA and PCR, RT-PCR, RT-qPCR, canalysis, bioinformatic, election quantitative analysis.		RNA and the op and molecular t R, cloning, vect	oportunities piology, DN/ ors, restricti	provided by the A-RNA and bid on enzymes, I	nese characht otechnology, [igation, transf	teristics for biotec DNA-RNA and bio formation, DNA se	hnologic bethic, equence	
Work Placement	N/A							
Planned Learning Activities	and Teaching Methods	Explanation	n (Presenta	tion), Discussi	on, Case Stud	dy, Problem Solvi	ng	
Name of Lecturer(s)								

Assessment Methods and Criteria						
Method	Quantity Percentage					
Midterm Examination		1	40			
Final Examination		1	70			

Recommended or Required Reading

- 1- Moleküler Biyolojide Kullanılan Yöntemler, Nobel Tıp Kitabevi, Yazar: Prof.Dr. Güler Temizkan, Prof.Dr. Nazlı Arda, ISBN: 9789754205831
- 2 2- PCR, BIOS Scientific Publishers, C.R. Newton and A. Graham
- 3- Moleküler Biyoloji, NOBEL Yayın Dağıtım, Çeviri Editörü: Prof. Dr. Muhsin KONUK, Yazarlar: P.C. Turner, A.G. McLennan, A.D. Bates and M.R.H. White

Week	Weekly Detailed Cour	se Contents				
1	Theoretical	DNA structure and characteristics				
2	Theoretical	RNA structure and characteristics				
3	Theoretical	DNA and RNA isolation				
4	Theoretical	Qualitative and Quantitative analysis methods				
5	Theoretical	DNA-RNA concentration determination				
6	Theoretical	Polymerase Chain Reaction (PCR)				
7	Theoretical	PCR-derived methods				
8	Intermediate Exam	Midterm Exam				
9	Theoretical	Vectors				
10	Theoretical	Restriction Enzyme Digestion and Ligation				
11	Theoretical	Transformation and verification of clones				
12	Theoretical	Sequence analysis and Bioinformatic				
13	Theoretical	Electrophoresis technics				
14	Theoretical	Denaturing Gradient Gel Electrophoresis (DGGE), Fluorescence In Situ Hybridization (FISH)				
15	Theoretical	Primer and Prob Design				
16	Final Exam	Final exam				

Workload Calculation					
Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	2	3	70	
Assignment	5	1	1	10	
Individual Work	4	2	2	16	

Midterm Examination	1	1	1	2
Final Examination	1	1	1	2
Total Workload (Hours)				
[Total Workload (Hours) / 25*] = ECTS 4				
*25 hour workload is accepted as 1 ECTS				

Lear	ning Outcomes
1	1. DNA and RNA structurs, charachteristics and isolations.
2	2. Associating the structural features of DNA and RNA with molecular biology and biotechnologic methods
3	3. Transformation the DNA-RNA charachteristics from bioinformatic data to wet-lab processes
4	Development new strategies in molecular biology and biotechnology.
5	To be able to integrate bioinformatics tools and databases with DNA-RNA applications

Progr	ramme Outcomes (Agricultural Biotechnology)					
1	To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology					
2	To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications					
3	To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems					
4	To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.					
5	To have the ability to analyze collected data and interpret the results.					
6	To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely					
7	To have the awareness of professional liabilities and ethics					
8	To be able to follow current national and international problems					

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	2	4	4	5	4
P2	2	4	3	4	5
P3	2	3	3	5	4
P4	2	3	4	3	5
P5	2	3	5	4	4
P6	2	2	2	4	5
P7	2	3	3	4	4
P8	2	4	4	5	5

