

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Variety Development		opment							
Course Code	TBY418	TBY418		Couse Level		First Cycle (Bachelor's Degree)			
ECTS Credit 4	Workload	104 (Hours)	Theory		2	Practice	2	Laboratory	0
Objectives of the Course Students learn		n improve ne v	/arieties l	by us	sing tradition	onal and new p	olant breedir	ng methods	
Course Content								assical breeding m g, molecular plant	
Work Placement N/A									
Planned Learning Activities and Teaching Methods			Explana	ation	(Presentat	ion), Demonst	tration, Disc	ussion	
Name of Lecturer(s)									

Assessment Methods and Criteria				
Method	Quantity	Percentage (%)		
Midterm Examination	1	30		
Final Examination	1	70		

Recommended or Required Reading					
1	Lecture notes				
2	Bitki Islahı, 2015, Orhan KURT, OMÜ, Ziraat Fakültesi Ders Kitabı, No:43				
3	Principles of Plant Genetics and Breeding, 2009, George Acquaah, Blackwell Publishing				

Week	Weekly Detailed Course Contents					
1	Theoretical	Crop production and plant breeding				
2	Theoretical	Importance of improve new varieties				
3	Theoretical	Genetic importance of pollination mechanism				
4	Theoretical	Hybridization techniques				
5	Theoretical	Selection				
6	Theoretical	Breeding methods used in self-pollinated plants				
7	Theoretical	Breeding methods used in cross-pollinated plants				
8	Intermediate Exam	Midterm exam				
9	Theoretical	Mutation breeding methods				
10	Theoretical	Biotechnological methods used in plant breeding I				
11	Theoretical	Biotechnological methods used in plant breeding II				
12	Theoretical	Gene transfer methods used in plant breeding				
13	Theoretical	Molecular plant breeding				
14	Theoretical	Marker techniques used in plant breeding				
15	Theoretical	Marker-based selection				
16	Final Exam	Final exam				

Quantity	Preparation	Duration	Total Workload			
14	2	2	56			
14	1	2	42			
1	2	1	3			
1	2	1	3			
Total Workload (Hours)						
[Total Workload (Hours) / 25*] = ECTS						
*25 hour workload is accepted as 1 ECTS						
	14	14 2 1 1 1 1 2 1 1 2 T	14 2 2 14 1 2 1 2 1 1 2 1 Total Workload (Hours)			

Learning Outcomes						
1	Students learn improve new varieties					
2	Students learn classical breeding methods used to develop cu	tivars				
3	Students learn modern techniques used to develop cultivars					
4	Have knowledge about the importance of plant breeding					
5	Have an idea on how to shorten the plant breeding process by	putting biotechnological processes in place				

Progra	amme Outcomes (Agricultural Biotechnology)				
1	To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology				
2	To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications				
3	To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems				
4	To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.				
5	To have the ability to analyze collected data and interpret the results.				
6	To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely				
7	To have the awareness of professional liabilities and ethics				
8	To be able to follow current national and international problems				

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	2	2	2	1 1	4
P2	4	2	4	2	4
P3	4	2	4	2	4
P4	2	2	2	1	4
P5	2	2	2	1	4
P6	3	3	3	1	4
P7	2	3	2	2	3
P8	2	3	2	2	3

