

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Recombinant	DNA Technolo	ogy II						
Course Code	TBY402		Couse Level		First Cycle (Bachelor's Degree)				
ECTS Credit 4	Workload	100 (Hours)	Theory	,	2	Practice	0	Laboratory	2
Objectives of the Course Aim of this Course is to familiarize students with the most frequently used methods in Recombinant DNA Technology and Genetic Engineering from both a theoretical and experimental point of view							nant DNA		
Course Content Construction and Use of Ge of Vaccines and Hormones Animals and their applicatio			in Micro	orga	nisms, Tra	nsgenic Pla	ants and their App	olications, Transg	
Work Placement N/A									
Planned Learning Activities and Teaching Methods			Explan	ation	(Presentat	tion), Expe	riment, Discussio	n, Individual Stud	dy
Name of Lecturer(s) Lec. Murat Kemal AVCI									

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	40				
Final Examination	1	70				

Recommended or Required Reading 1 Principles of Gene Manipulation Sandy B., Primrose, Richard M. Twyman, Madlen, MA; Oxford: Blackwell Pub., (2006) 2 Gene Cloning and DNA Analysis An Introduction Fourth Edition T.A Brown 3 An Introduction to Genetic Engineering (Studies in Biology) (2002) Desmond S. T. Nicholl Cambridge University Press

Week	Weekly Detailed Cour	Detailed Course Contents						
1	Preparation Work	Having knowledge from source books						
2	Theoretical	Recombinant DNA Technology and Their Applications						
	Preparation Work	Having knowledge from source books						
3	Theoretical	Construction and Use of Genomic and cDNA Libraries						
	Preparation Work	Having knowledge from source books						
4	Theoretical	Manipulating DNA in Microorganisms other than E. Coli 1						
	Preparation Work	Having knowledge from source books						
5	Theoretical	Manipulating DNA in Microorganisms other than E. Coli 2						
	Preparation Work	Having knowledge from source books						
6	Theoretical	Production of Recombinant Proteins 1						
	Preparation Work	Having knowledge from source books						
7	Theoretical	Production of Recombinant Proteins 2						
	Preparation Work	Having knowledge from source books						
8	Theoretical	General review						
9	Theoretical	Production of Vaccines and Hormones in Microorganisms 1						
	Preparation Work	Having knowledge from source books						
10	Theoretical	Production of Vaccines and Hormones in Microorganisms 2						
	Preparation Work	Having knowledge from source books						
11	Theoretical	Production of Transgenic Plants						
	Preparation Work	Having knowledge from source books						
12	Theoretical	Areas of use of Transgenic Plants						
	Preparation Work	Having knowledge from source books						
13	Theoretical	Transgenic Animals and their Applications						
	Preparation Work	Having knowledge from source books						
14	Theoretical	Impacts of Recombinant DNA and Genetic Engineering on the Biological Sciences, Medicine and Industry						
	Preparation Work	Having knowledge from source books						
15	Theoretical	General evoluation						

15	Preparation Work	Source books	
16	Final Exam	Final exam	

Workload Calculation					
Activity	Quantity		Preparation	Duration	Total Workload
Lecture - Theory	15		1	2	45
Assignment	1		4	1	5
Laboratory	15		1	2	45
Final Examination	1		4	1	5
	100				
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes

- 1 At the end of this course students learn basic methods of gene cloning and manipulation for protein expression.
- At the end of this course students learn how recombinant DNA technology is used in genetic engineering to modify prokaryotic and eukaryotic cells
- 3 Students gain information about practical and biotechnological applications of recombinant DNA technology
- 4 To be able to carry out a project consisting of basic techniques used in Recombinant DNA Technology alone.
- 5 To be able to create a target-oriented project, to be able to select, apply and interpret the results of laboratory experiments.

Programme Outcomes (Agricultural Biotechnology)

- To be able to develop skills in identifying, modeling and solving problems in agricultural biotechnology
- To be able to synthesize life and engineering sciences for the effective resource planning of agricultural biotechnology applications
- To be able to interpret about living organisms structure, metabolic and physiological processes in order to propose biotechnological solutions to the agricultural problems
- 4 To be able to analyze genomic, metabolomic and proteomic information via bioinformatic tools.
- 5 To have the ability to analyze collected data and interpret the results.
- To have the ability of individual working ability and to make independent decisions, to work in inter-disciplinary and interdisciplinary teamwork, to communicate by expressing their ideas orally and in writing, clearly and concisely
- 7 To have the awareness of professional liabilities and ethics
- 8 To be able to follow current national and international problems

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2:Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	5	5	3	5
P2	5	5	5	3	5
P3	5	5	5	4	5
P4	5	5	5	4	5
P5	5	5	5	4	5
P6	5	5	5	5	5
P7	4	4	5	5	4
P8	5	5	5	5	4

