

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Thermodynamics								
Course Code		MKE209		Couse Level		Short Cycle (Associate's Degree)				
ECTS Credit	2	Workload	50 (Hours)	Theory	,	2	Practice	0	Laboratory	0
Objectives of the Course		Basic thermodynamic concepts, work, thermodynamic laws, cycles, motor cycles, power, yield expressions, combustion and the theory of fuels.								
Course Content		Basic concepts, laws of thermodynamics, thermodynamic properties of pure substance								
Work Placement		N/A								
Planned Learning Activities and Teaching Methods Explanation (Presentation), Problem Solving										
Name of Lecturer(s)		Assoc. Prof. N	/lurat ÜNVERI	Dİ						

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	40			
Final Examination	1	70			

Recommended or Required Reading

1 Termodinamik Ders Notları

Week	Weekly Detailed Cour	se Contents			
1	Theoretical	Basic concepts (system, environment, state change, cycle), the zero law of thermodynamics			
2	Theoretical	Heat and work conversions			
3	Theoretical	Thermodynamic properties of pure substance (property relations, p-v, T-s diagrams)			
4	Theoretical	Thermodynamic properties of pure substance (property relations, p-v, T-s diagrams)			
5	Theoretical	Ideal gas equation and state changes of ideal gases			
6	Theoretical	1st Law of Thermodynamics			
7	Theoretical	2nd law of thermodynamics			
8	Theoretical	Engine cycles, comparison of cycles			
9	Intermediate Exam	Midterm			
10	Theoretical	Work, efficiency, power in internal combustion engines			
11	Theoretical	Engine performance characteristics			
12	Theoretical	Fuels, physical and chemical properties, physical analysis of chemical, chemical properties, burning in spark-ignition engines			
13	Theoretical	Classification of combustion fuels in compression ignition engines, hydrocarbons, alcohols and their derivatives, classification of combustion, combustion equations			
14	Theoretical	Combustion products and analysis, fuel and combustion related tables, alternative fuels and combustion			
15	Theoretical	In motors, the sources of burning are knocking, evaporation of fuels, knock resistance			
16	Final Exam	Final Examination			

Workload Calculation						
Activity	Quantity	Preparation		Duration		Total Workload
Lecture - Theory	14		0	2		28
Assignment	5		0	1		5
Term Project	5		0	1		5
Midterm Examination	1		5	1		6
Final Examination	1		5	1		6
Total Workload (Hours)						50
[Total Workload (Hours) / 25*] = ECTS						2
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes					
1	To be able to make Energy Transformations and General Energy Analysis				
2	To be able to analyze energy of closed systems				
3	To make basic thermodynamic calculations				
4	Draw motor cycles and make necessary calculations				
5	Gas Steam Mixtures and Air Conditioning				

5	Gas Steam Mixtures and Air Conditioning						
Progr	Programme Outcomes (Machinery)						
1	To be able to know general properties and usage areas of industrial materials and make selection.						
2	Design of machine elements.						
3	To be able to make production using machining and wel-	ding	machines without machining.				
4	To be able to make measurement and quality control pro	oces	ses with machine tools for measuring and control equipment.				
5	To be able to make necessary corrections in order to demethods in welded parts and to eliminate these mistakes		nine the mistakes by using the necessary non-destructive test				
6	Preventive measures to prevent the occurrence of these faults by preliminarily determining the faults that will occur in the machines as statistical data and to make necessary interventions in case of breakdown.						
7	They can make drawings of work pieces on CAD station and AUTOCAD package programs.	and	apply them on CNC looms. Ability to operate and use CAD / CAM				
8	To be able to transfer engineering science and technolog principles.	gy to	practice by making calculations in the direction of scientific				
9	It can repair the elements in pneumatic and hydraulic syland can regulate their work.	sten	ns which are indispensable elements of automatic control systems				
10			ne whole program knows that industrial task definition in the field anning of functions and activities and they can be achieved by				

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L3	L4
P1	5	5
P2	5	5
P3	4	4
P4	4	4
P5	4	5
P6	4	5
P7	4	5
P8	3	3
P9	4	5
P10	5	5

