

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Energy Production Using Biomass							
Course Code		AEK206		Couse Level		Short Cycle (Associate's Degree)			
ECTS Credit	3	Workload	71 (Hours)	Theory	2	Practice	0	Laboratory	0
Objectives of the Course		Students are expected to learn biomass concept, utility techniques, energy generation and usage.							
Course Content		Biomass concept, energy generation methods, utility areas, power facilities, and sustainability concepts.							
Work Placement		N/A							
Planned Learning Activities and Teaching Methods Expla			Explanation	(Presenta	tion), Case Stu	ıdy, Individu	al Study		
Name of Lecturer(s) Assoc. Prof. Hakan C		lakan Can SÖ	YLEYİCİ						

Assessment Methods and Criteria				
Method	Quantity	Percentage (%)		
Midterm Examination	1	40		
Final Examination	1	70		

Recommended or Required Reading

1 Alternatif Enerji Kaynakları Yazar: Mustafa Acaroğlu

Week	Weekly Detailed Co	irse Contents				
1	Theoretical	Introduction to biomass concept				
2	Theoretical	Biomass as source of energy, biomass raw materials and sustainability				
3	Theoretical	Photosynthesis of biomass and properties				
4	Theoretical	Plant biomass: Energy plants, forests, algae production systems				
5	Theoretical	Waste biomass and reusability				
6	Theoretical	Physical conversion processes				
7	Theoretical	Thermal conversion: Burning				
8	Theoretical	Thermal conversion: Pyrolysis and liquidification				
9	Theoretical	Thermal conversion: Pyrolysis and liquidification				
10	Theoretical	Thermal conversion: gasification				
11	Theoretical	Usage examples				
12	Theoretical	Usage samples				
13	Theoretical	Biomass policies and marketing				
14	Theoretical	Biomass and sustainability				
15	Theoretical	Biomass and sustainability				
16	Final Exam	Final exam				

Workload Calculation					
Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	13	1	1	26	
Assignment	5	1	2	15	
Project	4	3	1	16	
Midterm Examination	1	6	1	7	
Final Examination	1	6	1	7	
Total Workload (Hours)					
	3				
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes 1 Calculates biomass energy potential.

² Designs biomass production plant.

3	Estimates biomass reserve capacity.	
4		
5		

Progr	amme Outcomes (Alternative Energy Sources Technology)
1	To have knowledge about basic science and technology.
2	To have knowledge about basic energy and alternative energy sources.
3	To have knowledge about basic electrical and electronic laws.
4	To have knowledge about the installation and operation of energy facilities.
5	Learning the methods of recycling of waste and use of energy.
6	To have experience in energy generation and project design.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	4	4	4	4	4
P4		5	5	5	5
P6		5	5	5	5

