

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Physics Laboratory I									
Course Code	FİZ121		Couse Level		First Cycle (Bachelor's Degree)				
ECTS Credit 2	Workload	50 (Hours)	Theory		0	Practice	0	Laboratory	3
Objectives of the Course To prove second law of New calculate physical parameter									
Course Content		ent forces an	d observ	ing t				s of bodies under n and distance, c	
Work Placement N/A									
Planned Learning Activities and Teaching Methods Experiment, Demonstration									
Name of Lecturer(s) Prof. Ethem AKTÜRK		KTÜRK							

Assessment Methods and Criteria						
Method	Quantity	Percentage (%) 15 70 15 10				
Midterm Examination	1	15				
Final Examination	1	70				
Quiz	6	15				
Laboratory	6	10				

Recommended or Required Reading

- 1 Prof. Dr. İsmet Ertaş, Denel Fizik Laboratuvar Deneyleri
- 2 Serway, Fen ve Mühendislik İçin Fizik, Palme Yayıncılık

Week	Weekly Detailed Course Contents						
1	Theoretical	ntroduce laboratory, demonstrate how using the measuring apparatuses					
2	Theoretical	ntroduce laboratory, demonstrate how using the measuring apparatuses					
3	Laboratory	The experiment of constant motion on air track					
4	Laboratory	The experiment of constant motion on air track					
5	Laboratory	Motion on inclined plane and trajectory motion					
6	Laboratory	Motion on inclined plane and trajectory motion					
7	Laboratory	Simple (mathematical) pendulum					
8	Laboratory	Simple (mathematical) pendulum					
9	Intermediate Exam	MIDTERM					
10	Laboratory	Spring pendulum					
11	Laboratory	Spring pendulum					
12	Laboratory	Collisions in two dimensions					
13	Laboratory	Collisions in two dimensions					
14	Laboratory	Constant circular motion					
15	Laboratory	Constant circular motion					

Workload Calculation							
Activity	Quantity	Preparation	Duration	Total Workload			
Laboratory	6	1	3	24			
Quiz	6	1	0.5	9			
Midterm Examination	1	2	1	3			
Final Examination	1	10	4	14			
	50						
	2						
*25 hour workload is accepted as 1 ECTS							

Lear	ning Outcomes					
1	Calculate constant of any 8 using Hooke's law and demonstrate if any system is in balance or not					
2	Calculate the first velocity in horizontal motion					
3	Understand basic harmonic motion					
4	Calculate acceleration of any moving particle					
5	Understand gyroscopic motion					
6	Understand torque subject					
7	Calculate the average velocity in one dimensional					

Progr	amme Outcomes (Physics)
1	To understand the importance of physics by understanding the general concepts of physics, matter and energy
2	To be able to define the movements of matter and to distinguish the characteristics of movements under different force (potential)
3	Be able to say the meaning of Lagrange and Hamiltonian formulations of the movement and apply them to simple problems,
4	To be able to express the fundamental concepts such as time, space, force, momentum and energy in the movements of matter close to the speed of light and be able to solve and interpret the simple problems related to
5	To be able to establish the relationship between electric and magnetic forces and to be able to illustrate their applications to technology and solve problems related to the movement of particles in electric and magnetic fields
6	Be able to say the basic laws of electromagnetics and apply them to problems, illustrate their applications to simple technology
7	To be able to tell the reasons of the differences between the classical cases and the quantum scale and explain the reasons
8	Explain the concepts of discontinuity, uncertainty, matter-antimatter, indecisiveness of quantum physics with examples and explain simple problems related to the subject.
9	To be able to solve the problems of micro-particles under different simple potentials and be able to say their meanings
10	To be able to establish the relationship between the movements and properties of multi-particle systems and the laws of probability and solve simple problems
11	To be able to illustrate the laws, meanings and applications of thermodynamics and use them
12	Be able to use their knowledge about quantum physics and mechanics in explaining some properties of atoms and nuclei
13	To be able to show the meanings of some theoretical concepts by experimenting, and develop a strong relationship between thought and the real world, develop analytical thinking
14	To be able to apply the meanings of the basic laws of physics, their comprehension of universality and the relations between them and the unity of the laws of nature.
15	Use computer to solve physics problems
16	To be able to understand the problems by using their analytical knowledge skills and to propose solutions by dealing with the laws of physics
17	Be able to use the knowledge of physics to understand new technologies
18	To be able to tell the relations between symmetry and conservation laws in laws of physics

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5	L6
P1	4	4				
P2	4	4	4			
P5	5	5	4	4	4	
P6	5		4	4	4	4

