

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Mathematical Methods in Physics I							
Course Code		FİZ207		Couse Level		First Cycle (Bachelor's Degree)			
ECTS Credit	7	Workload	180 <i>(Hours)</i>	Theory	4	Practice	0	Laboratory	0
Objectives of the Course		To introduce the basic principles of mathematical methods in physics.							
Course Content		Calculus of two variables, eigenvalue equation, special functions							
Work Placement		N/A							
Planned Learning Activities and Teaching Methods Explanation (Presentation), Discussion									
Name of Lectu	urer(s)	Lec. Cenk AK	YÜZ						

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	20	
Final Examination	1	70	
Quiz	2	20	

Recommended or Required Reading

1	Coşkun ÖNEM	, "Mühendisli	k ve Fizikte	Matematik Metodları",	Birsen Y	ayınevi, İstanbul.
~						

- 2 Mathematical Methods for Physicists, George Arfken, Academic Pres, 1985.
- 3 Mathematical Methods for Students of Physics and Related Fields. S. Hassani, Springer, 2008.

Week	Weekly Detailed Course Contents				
1	Theoretical	Vector Calculus			
2	Theoretical	Differential Operators			
3	Theoretical	Integral theorems			
4	Theoretical	Linear Vector Spaces			
5	Theoretical	Linear Operators			
6	Theoretical	Matrices			
7	Theoretical	Dioganalization of Matrices			
8	Intermediate Exam	MIDTERM EXAM			
9	Theoretical	Eigenvalue and Eigenvector Problems			
10	Theoretical	Legendre Polynomials			
11	Theoretical	Hermite Polynomials			
12	Theoretical	Laguerre Polynomials			
13	Theoretical	Bessel Functions			
14	Theoretical	Complex Functions			
15	Theoretical	Gamma and Beta Functions			

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload			
Lecture - Theory	15	6	3	135			
Quiz	2	4	0.5	9			
Midterm Examination	1	10	2	12			
Final Examination	1	22	2	24			
	180						
	7						
25 hour workload is apported as 1 ECTS							

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

The students should be able to express the physical problems in terms of vectors.

1

2	The student should be able to establish the relationship between the field and integral theorems.
3	The students should be able to express the physical problems in matrix formulation.
4	The students should be able to express the importance of eigenvalues and eigenfunctions in physics.
5	The students should be able to express the concept of linear independence.
6	The students should be able to calculations with the complex functions
7	The students should be able to use Gamma and Beta functions.

Programme Outcomes (Physics)

Flogia	annie Outcomes (<i>Friysics)</i>
1	To understand the importance of physics by understanding the general concepts of physics, matter and energy
2	To be able to define the movements of matter and to distinguish the characteristics of movements under different force (potential)
3	Be able to say the meaning of Lagrange and Hamiltonian formulations of the movement and apply them to simple problems,
4	To be able to express the fundamental concepts such as time, space, force, momentum and energy in the movements of matter close to the speed of light and be able to solve and interpret the simple problems related to
5	To be able to establish the relationship between electric and magnetic forces and to be able to illustrate their applications to technology and solve problems related to the movement of particles in electric and magnetic fields
6	Be able to say the basic laws of electromagnetics and apply them to problems, illustrate their applications to simple technology
7	To be able to tell the reasons of the differences between the classical cases and the quantum scale and explain the reasons
8	Explain the concepts of discontinuity, uncertainty, matter-antimatter, indecisiveness of quantum physics with examples and explain simple problems related to the subject.
9	To be able to solve the problems of micro-particles under different simple potentials and be able to say their meanings
10	To be able to establish the relationship between the movements and properties of multi-particle systems and the laws of probability and solve simple problems
11	To be able to illustrate the laws, meanings and applications of thermodynamics and use them
12	Be able to use their knowledge about quantum physics and mechanics in explaining some properties of atoms and nuclei
13	To be able to show the meanings of some theoretical concepts by experimenting, and develop a strong relationship between thought and the real world, develop analytical thinking
14	To be able to apply the meanings of the basic laws of physics, their comprehension of universality and the relations between them and the unity of the laws of nature.
15	Use computer to solve physics problems
16	To be able to understand the problems by using their analytical knowledge skills and to propose solutions by dealing with the laws of physics
17	Be able to use the knowledge of physics to understand new technologies
18	To be able to tell the relations between symmetry and conservation laws in laws of physics

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	L6	L7
P1	5	4	3	3	3	4	2
P2	5	4	4	3	4	4	3
P3	5	3	3	3	4	4	4
P4	5	4	2	4	3	4	2
P5	5	5	3	2	2	3	2
P6	5	5	2	2	2	3	2
P7	3	2	3	3	4	2	3
P8	2	2	2	3	3	1	3
P9	4	2	3	4	4	4	4
P10	4	3	2	2	3	4	3
P11	3	3	3	3	2	2	4
P12	3	2	5	4	3	3	3
P13	2	2	3	2	2	2	2
P14	4	3	3	3	3	4	2
P15	1	1	4	4	2	2	2
P16	2	2	3	3	1	1	2
P17	1	2	3	3	1	1	2
P18	3	3	4	3	2	3	2

