

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Relative Physics							
Course Code		FİZ333		Couse Level		First Cycle (Bachelor's Degree)			
ECTS Credit	6	Workload	156 (Hours)	Theory	3	Practice	0	Laboratory	0
2.		 To discuss To represe To compare 	nt Einstein rela	ativity theor		es			
Course Content Galileo transformation, Lore			ntz transfo	rmation, spe	cial relativity, c	general relat	tivity		
Work Placement N/A									
Planned Learning Activities and Teaching Methods			Methods	Explanation	n (Presenta	tion), Discussio	on		
Name of Lecturer(s) Prof. Cesur EKİZ									

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	30				
Final Examination	1	70				
Quiz	10	10				

Recommended or Required Reading

1 The special theory of relativity (David Bohm)

Week	Weekly Detailed Cour	se Contents
1	Theoretical	Relativity phenomenon
2	Theoretical	Galilean relativity (noninertial systems)
3	Theoretical	Motion in inertial motion
4	Theoretical	Applications of centrifugal and Corilois forces
5	Theoretical	Axioms of special relativity
6	Theoretical	Lorentz transformations
7	Theoretical	Length contraction and time dilation
8	Intermediate Exam	Midterm Exam
9	Theoretical	Doppler effect and twin paradox
10	Theoretical	Relative momentum and energy
11	Theoretical	Unchangeable quantities under Lorentz transformations
12	Theoretical	Four vector
13	Theoretical	Tensors
14	Theoretical	Tensors
15	Theoretical	A quick insight to general relativity

Workload Calculation					
Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	2	3	70	
Quiz	10	3	1	40	
Midterm Examination	1	18	1.5	19.5	
Final Examination	1	25	1.5	26.5	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes

1 To know Galileo transformation

2	To know Lorentz transformation
3	Must define inertial and noninertial reference systems and say their importance in physics
4	Must compare space-time phenomenon of special relativity and general relativity
5	Must know two axioms of special relativity
6	Must solve basic problems about length contraction and time dilation phenomenon
7	Must represent basic phenomenon such that force, momentum, energy and time for matter's motions near to light velocity and must solve and discuss basic problems related with these subjects
8	Must realize the equation if it alters under Lorentz transformations or not

amme Outcomes (Physics)
To understand the importance of physics by understanding the general concepts of physics, matter and energy
To be able to define the movements of matter and to distinguish the characteristics of movements under different force (potential)
Be able to say the meaning of Lagrange and Hamiltonian formulations of the movement and apply them to simple problems,
To be able to express the fundamental concepts such as time, space, force, momentum and energy in the movements of matter close to the speed of light and be able to solve and interpret the simple problems related to
To be able to establish the relationship between electric and magnetic forces and to be able to illustrate their applications to technology and solve problems related to the movement of particles in electric and magnetic fields
Be able to say the basic laws of electromagnetics and apply them to problems, illustrate their applications to simple technology
To be able to tell the reasons of the differences between the classical cases and the quantum scale and explain the reasons
Explain the concepts of discontinuity, uncertainty, matter-antimatter, indecisiveness of quantum physics with examples and explain simple problems related to the subject.
To be able to solve the problems of micro-particles under different simple potentials and be able to say their meanings
To be able to establish the relationship between the movements and properties of multi-particle systems and the laws of probability and solve simple problems
To be able to illustrate the laws, meanings and applications of thermodynamics and use them
Be able to use their knowledge about quantum physics and mechanics in explaining some properties of atoms and nuclei
To be able to show the meanings of some theoretical concepts by experimenting, and develop a strong relationship between thought and the real world, develop analytical thinking
To be able to apply the meanings of the basic laws of physics, their comprehension of universality and the relations between them and the unity of the laws of nature.
Use computer to solve physics problems
To be able to understand the problems by using their analytical knowledge skills and to propose solutions by dealing with the laws of physics
Be able to use the knowledge of physics to understand new technologies

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

To be able to tell the relations between symmetry and conservation laws in laws of physics

	L1	L2	L3	L4	L5	L6	L7	L8
P1	3	3	4	3	3	3	3	3
P2			4	3				
P3			2					
P4	4	5	5	5	5	5	5	5
P5	3	3	3	3	3	3	3	3
P6	3	3	3	3	3	3	3	3
P10	2	2	2					
P14	3	3	3	3	3	3	3	3
P16	3	3	3	3	3	3	3	3
P17				3				
P18	4	4	3	3		3	4	5

18