

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Nonlinear Dynamical Systems								
Course Code		FİZ433		Couse Level			First Cycle (Bachelor's Degree)			
ECTS Credit	7	Workload	179 (Hours)	Theory		3	Practice	0	Laboratory	0
Objectives of the Course										
Course Content										
Work Placement		N/A								
Planned Learning Activities and Teaching Methods			Explana	ation	(Presenta	tion), Discussi	on			
Name of Lecturer	(s)									

Assessment Methods and Criteria							
Method	Quantity	Percentage (%)					
Midterm Examination	1	40					
Final Examination	1	70					

Recommended or Required Reading							
1	F. Verhulst, Non-linear Differential Equations and Dynamical Systems , Springer - Verlag, 1989.						
2	Differential Equations, Dynamical Equations and Linear Algebra, M.W. Hirsch and S. Smale						
3	Dynamical Systems with Applications using Mathematica. Stephen Lynch.						
4	Invitation to Dynamical Systems. Edward R. Scheinerman						

Week	Weekly Detailed Cour	eekly Detailed Course Contents						
1	Theoretical	Linear theory of dynamic systems: Basic solutions, Autonomous linear systems and Phase portraits, critical points and stability						
2	Theoretical	Nonlinear Dynamic systems: Autonomous nonlinear systems and Phase portraits, orbits and critical points						
3	Theoretical	Linearization of nonlinear systems around critical point						
4	Theoretical	Stability of linearization, asymptotic stability of solution, instability of periodic solutions						
5	Theoretical	Periodic solutions, stability of periodic solutions, Hamiltonian systems and systems with first integrals						
6	Theoretical	Conservative force fields and elliptical orbits, Hamiltonian mechanics, Volterra-Lotka hunting equations						
7	Theoretical	Liapunov functions						
8	Theoretical	Liapunov stability analysis						
9	Intermediate Exam	Midterm Exam						
10	Theoretical	ntroduction to irregularity theory, Poincare propagation theorem						
11	Theoretical	Branching theory, central manifolds						
12	Theoretical	Branching of critical points and Hopf branching						
13	Theoretical	Chaos, Lorenz equations						
14	Theoretical	One dimensional chaos						
15	Theoretical	Lyapunov coefficients						

Workload Calculation							
Activity	Quantity	Preparation	Duration	Total Workload			
Lecture - Theory	14	8	3	154			
Midterm Examination	1	10	2	12			

Final Examination	1		10	3	13	
	179					
	7					
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes

- 1 To be able to obtain and classify the critical points of dynamic systems
- 2 To be able to analyze the stability of nonlinear dynamic systems using linearization and Liapunov functions
- To be able to analyze the applications of applied mathematics or problems in different fields by using techniques of dynamic systems
- 4 Be able to identify and classify non-linear differential equations
- 5 To be able to determine approximate solutions of nonlinear differential equations using perturbation techniques.

Programme Outcomes (Physics)

- 1 To understand the importance of physics by understanding the general concepts of physics, matter and energy
- To be able to define the movements of matter and to distinguish the characteristics of movements under different force (potential)
- 3 Be able to say the meaning of Lagrange and Hamiltonian formulations of the movement and apply them to simple problems,
- To be able to express the fundamental concepts such as time, space, force, momentum and energy in the movements of matter close to the speed of light and be able to solve and interpret the simple problems related to
- To be able to establish the relationship between electric and magnetic forces and to be able to illustrate their applications to technology and solve problems related to the movement of particles in electric and magnetic fields
- 6 Be able to say the basic laws of electromagnetics and apply them to problems, illustrate their applications to simple technology
- 7 To be able to tell the reasons of the differences between the classical cases and the quantum scale and explain the reasons
- 8 Explain the concepts of discontinuity, uncertainty, matter-antimatter, indecisiveness of quantum physics with examples and explain simple problems related to the subject.
- 9 To be able to solve the problems of micro-particles under different simple potentials and be able to say their meanings
- To be able to establish the relationship between the movements and properties of multi-particle systems and the laws of probability and solve simple problems
- To be able to illustrate the laws, meanings and applications of thermodynamics and use them
- Be able to use their knowledge about quantum physics and mechanics in explaining some properties of atoms and nuclei
- To be able to show the meanings of some theoretical concepts by experimenting, and develop a strong relationship between thought and the real world, develop analytical thinking
- To be able to apply the meanings of the basic laws of physics, their comprehension of universality and the relations between them and the unity of the laws of nature.
- 15 Use computer to solve physics problems
- To be able to understand the problems by using their analytical knowledge skills and to propose solutions by dealing with the laws of physics
- 17 Be able to use the knowledge of physics to understand new technologies
- 18 To be able to tell the relations between symmetry and conservation laws in laws of physics

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	3	3	4	3
P2		3			
P3	4		4		
P4				2	

