

AYDIN ADNAN MENDERES UNIVERSITY **COURSE INFORMATION FORM**

Course Title Electromagnetic Theory I									
Course Code		FİZ403	FİZ403 Cou		el	First Cycle (Ba	achelor's Degree)		
ECTS Credit	7	Workload	175 <i>(Hours)</i>	Theory	4	Practice	0	Laboratory	0
Objectives of the Course Electrostatic and special technique of an electric field will be investigated.						the behavior o	of dielectric	material when it is	placed in
Course Conter	nt	and energy, c	onductors. Po pole expansio	tential calcul	ation techr	niques: Laplace	equation, s	aw, electric potent separation of varia arized object. Disp	bles
Work Placeme	nt	N/A							
Planned Learning Activities and Teaching Methods				Explanation	(Presenta	tion), Discussio	on		
Name of Lectu	rer(s)	Prof. Hasan H	lüseyin KART						

Assessment Methods and Criteria	
Method	Quantity
Midterm Examination	1

Method	Quantity	Percentage (%)
Midterm Examination	1	30
Final Examination	1	70
Assignment	4	10

Recommended or Required Reading

1	Introduction to Electrodynamics, D.J.Griffiths, 2003
2	Electricity and Magnetism, Edward M. Purcell, 2011
3	Classical Electrodynamics, John David Jackson, 1998
4	The Feynman Lectures on Physics, Vol. II, Richard P. Feynman, Robert B. Leighton, 2011

Week	Weekly Detailed Course Contents									
1	Theoretical	Vector algebra, differential calculus								
2	Theoretical	The fundamental theorem for gradients, divergences , curls, curvilinear coordinates, Dirac Delta functions								
3	Theoretical	ectric field, Coulomb's law and continuous charge distributions								
4	Theoretical	vergence and Curl of electrostatic field and applications of Gauss's law								
5	Theoretical	Electric potential								
6	Theoretical	Work and energy, conductors								
7	Intermediate Exam	Midterm								
8	Theoretical	Special techniques, the properties of Laplace's equations								
9	Theoretical	The method of images charge, induced surface charge, other image problems								
10	Theoretical	Separation of variables, cartesian and spherical coordinates								
11	Theoretical	Dielectrics media, polarization, dielectrics, induced dipoles, polar molecules								
12	Theoretical	The electric field of a Polarized object, bound charges, the electric field inside a dielectric								
13	Theoretical	Electric displacement vector, Gauss's law in the presence of dielectrics								
14	Theoretical	Linear dielectrics, susceptibility, permittivity, dielectric constant								
15	Theoretical	Special problems for linear dielectric, energy in dielectric systems, forces on dielectrics								

Workload Calculation										
Activity	Quantity	Preparation	Duration	Total Workload						
Lecture - Theory	14	6	3	126						
Midterm Examination	1	20	2	22						

					Course Information Fo		
Final Examination	1		25	2	27		
Total Workload (Hours)							
[Total Workload (Hours) / 25*] = ECTS							
*25 hour workload is accepted as 1 ECTS							

Learning	Outcomes
Louining	Outcomes

Lean	
1	Geometrical interpretation of Divergence, Curl, Gradient and these equations apply to fundamental problems of electrostatic and sampling them to real world
2	How to calculate the electric field due to point charge and to apply Gauss's law
3	The electric field of continuous charge distributions can be calculated
4	The concepts of electric field and electrical potential should be explained
5	The potential which is created by localized charge distribution should be calculated
6	The fundamental properties of conductors should be learned such as behavior of a conductor in an electrical field
7	Laplace equation should be solved under different boundary conditions
8	The fundamental principles of electromagnetism should be known and applied to the problems
9	The potential at which ground surface by creating point charge should be calculated
10	The fundamental properties of dielectric concepts and also dielectric under the electric field should be learnt
11	The fundamental concepts, such as, Polarisability and permittivity should be learnt.

Programme Outcomes (*Physics*)

1	To understand the importance of physics by understanding the general concepts of physics, matter and energy
2	To be able to define the movements of matter and to distinguish the characteristics of movements under different force (potential)
3	Be able to say the meaning of Lagrange and Hamiltonian formulations of the movement and apply them to simple problems,
4	To be able to express the fundamental concepts such as time, space, force, momentum and energy in the movements of matter close to the speed of light and be able to solve and interpret the simple problems related to
5	To be able to establish the relationship between electric and magnetic forces and to be able to illustrate their applications to technology and solve problems related to the movement of particles in electric and magnetic fields
6	Be able to say the basic laws of electromagnetics and apply them to problems, illustrate their applications to simple technology
7	To be able to tell the reasons of the differences between the classical cases and the quantum scale and explain the reasons
8	Explain the concepts of discontinuity, uncertainty, matter-antimatter, indecisiveness of quantum physics with examples and explain simple problems related to the subject.
9	To be able to solve the problems of micro-particles under different simple potentials and be able to say their meanings
10	To be able to establish the relationship between the movements and properties of multi-particle systems and the laws of probability and solve simple problems
11	To be able to illustrate the laws, meanings and applications of thermodynamics and use them
12	Be able to use their knowledge about quantum physics and mechanics in explaining some properties of atoms and nuclei
13	To be able to show the meanings of some theoretical concepts by experimenting, and develop a strong relationship between thought and the real world, develop analytical thinking
14	To be able to apply the meanings of the basic laws of physics, their comprehension of universality and the relations between them and the unity of the laws of nature.
15	Use computer to solve physics problems
16	To be able to understand the problems by using their analytical knowledge skills and to propose solutions by dealing with the laws of physics
17	Be able to use the knowledge of physics to understand new technologies
18	To be able to tell the relations between symmetry and conservation laws in laws of physics

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

			•			•					
	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11
P1	2	3	2			2	2			3	3
P2	2	3	2			2	2			3	3
P5	3	5	3	5	3	3	3	3	3	3	3
P6	5	5	5	5	5	5	5	5	5	5	5
P7	3	3	3	3	3	3	3	3			
P8								2	2	2	2
P9	2	3	2	2	5	3	3	3	3	3	3
P10	2	2	2	2	2						

P11										2	2
P12	2	2	2	2							
P13		5	5	5	2	2					
P14	5	5	3	3	3	3	3	3	3	3	3
P15	2	2	2	2	2						
P16	5	5	5	5	5	5	5	5	5	5	5
P17	2	2	2	2							
P18	2	2	2	2							

