

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Atom Molecule Physics								
Course Code		FİZ437		Couse Level		First Cycle (Bachelor's Degree)				
ECTS Credit	7	Workload	168 <i>(Hours)</i>	Theory 4		4	Practice	0	Laboratory	0
Objectives of t	he Course	To teach structure of atom and molecules, energy levels, wave functions, electromagnetic transitions, atomic and molecular spectroscopy.								
Course Content		Solutions of central field in hydrogen atom, some terms of Atomic Hamiltonian, Atomic spectroscopy, Application of perturbation theory to atomic physics, molecular physics.								
Work Placement		N/A								
Planned Learning Activities and Teaching Methods			Methods	Explan	nation (Presentation), Discussion, Problem Solving					
Name of Lectu	urer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	40	
Final Examination	1	60	
Assignment	1	10	

Recommended or Required Reading

- 1 Atomic and Molecular Physics, Erol Aygün, Mehmet Zengin, 2009.
- 2 Physics of Atom and Molecules, B. H. Bransden and C. J. Joachain, 2003.
- 3 Atom, Molecul and Nucleus, Cemil Şenvar, 1982.

Week	Weekly Detailed Course Contents						
1	Theoretical	Solution of the Schrödinger equation for hydrogen atom					
2	Theoretical	Wave functions and energy levels of hydrogen atom, orbitals					
3	Theoretical	Dirac representation of wave functions					
4	Theoretical	Expectation values, Virual theorem, Pauli spin matrix					
5	Theoretical	Zeeman effect, spin-orbital interaction (fine structure)					
6	Theoretical	Magnetic dipol-dipol interaction (Hyperfine structure)					
7	Theoretical	Stark effect, selection rules, Clebsch-Gordon coefficients					
8	Intermediate Exam	Midterm Exam					
9	Theoretical	Atomic spectroscopy, spectra of sodium, X-ray spectroscopy, Hund rules					
10	Theoretical	Spectrum of Helium, the Lamp shift, magnetic resonance					
11	Theoretical	Time-independent perturbation theory					
12	Theoretical	Time-dependent perturbation theory					
13	Theoretical	Molecular physics, binding energy of molecules					
14	Theoretical	Spectra of molecules with two atoms					
15	Theoretical	Electronic radiation					

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	4	4	112	
Assignment	1	6	1	7	
Midterm Examination	1	20	2	22	
Final Examination	1	25	2	27	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is accepted as 1 ECTS					

Lear	Learning Outcomes						
1	To solve the Schrödinger equation for hydrogen atom						
2	To learn Dirac presentation of wave functions						
3	To learn some terms of Atomic Hamiltonian						
4	To learn Atomic Spectroscopy						
5	To apply perturbation theory to atomic physics						
6	To learn molecular structure and molecular spectroscopy						

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	L6
P7	5	5				
P8	4	4	4	4	4	4
P12			5	5	5	5

Course Information Form