AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Recommended or Required Reading

1 Quantum Mechanics (Authors: Tekin Dereli, Abdullah Verçin)
2 Introduction to quantum mechanics (D. Griffiths)

Week	Weekly Detailed Course Contents	
1	Theoretical	Introduction to quantum mechanics, Black body radiation, Photoelectric effect
2	Theoretical	Compton scattering, Hydrogen atom and Bohr model
3	Theoretical	Operators and Eigenvalue equations
4	Theoretical	Set of orthonormal functions
5	Theoretical	The fundamental postulates of quantum mechanics
6	Intermediate Exam	Midterm
7	Theoretical	The time rate of change of expectation values, Uncertainty relations
8	Theoretical	Energy Eigenvalues equations in one dimensioned
9	Theoretical	Finite and Infinite potential well
10	Theoretical	Potential Barriers
11	Theoretical	Tunnel effect and applications
12	Theoretical	Harmonic oscillator, Energy Eigenvalues equations
13	Theoretical	Hermite Polynomial, eigenvalues and eigenfunctions
14	Theoretical	Creation and Annihilation operators
16	Theoretical	Creation and Annihilation operators for Harmonic oscillator.

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	6	4	140
Quiz	10	1	1	20
Midterm Examination	1	12	1.5	13.5
Final Examination	1	20	2	22
Total Workload (Hours)				195
[Total Workload (Hours) / 25*] = ECTS				8

[^0]
Learning Outcomes

1 It can be explained why is necessary of the quantum mechanics and should be difference between quantum and classic physics
2 To solve problems which is related to the motion of micro particles under various simple potential and can say meaning of its 3 Students can use the knowledge of quantum mechanics to explain some properties of atom and molecules

The concepts of quantum mechanics such as discrete, uncertainty, instability and expectation value should be explained by using examples
The relationship between the motion and properties of many body systems can be threaded and simple problems with related to this topic should be solved
6 The fundamental postulates of quantum mechanics should be explained
$7 \quad$ The properties of Schrödinger Wave Equation must be told
8 The approximate solution should be suggested to exactly unsolved problems

Programme Outcomes (Physics)

1 To understand the importance of physics by understanding the general concepts of physics, matter and energy

3 Be able to say the meaning of Lagrange and Hamiltonian formulations of the movement and apply them to simple problems,
To be able to express the fundamental concepts such as time, space, force, momentum and energy in the movements of matter close to the speed of light and be able to solve and interpret the simple problems related to
To be able to establish the relationship between electric and magnetic forces and to be able to illustrate their applications to technology and solve problems related to the movement of particles in electric and magnetic fields

11 To be able to illustrate the laws, meanings and applications of thermodynamics and use them

To be able to understand the problems by using their analytical knowledge skills and to propose solutions by dealing with the laws of physics
17 Be able to use the knowledge of physics to understand new technologies
18 To be able to tell the relations between symmetry and conservation laws in laws of physics

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5	L6	L7	L8
P1		3	2	3	2			
P2		3	3	4	3	2	3	
P3		3	3	3	3	2	3	
P7	5	4	4	4	3	4	2	3
P8	3	4	4	5	3	4	3	
P9	4	5	5	4	4	3	4	
P10	3	4	4	3	5	2	3	
P12	2	4	4	4	4	4	5	
P13								3
P14	2	2	2	3	4	4	3	
P16	3	3	3	3	3	3	3	5
P17						2	2	5
P18	2	3	3	3	4	4	3	

[^0]: *25 hour workload is accepted as 1 ECTS

