

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Calculus II							
Course Code		MAT154		Couse Level		First Cycle (Bachelor's Degree)			
ECTS Credit	6	Workload	150 <i>(Hours)</i>	Theory	4	Practice	0	Laboratory	0
Objectives of t	he Course	Course The aim of this course is to introduce the definite integral and to teach some applications of integral such as finding area and volume. To teach sequences and series and their convergence and divergence. To teach limit, continuity and partial derivatives of functions of several variables.							
Course Content		Volume, Leng Convergence Several Varia	th, Average V Tests, Expree	alue of Fu ess the Fu I Continui	unction, other Inctions as Pc ty, Partial Der	Applications. I wer Series. Ta	nfinite Seque aylor and Mac	egration Application inces and Series; claurin Series. Fu onal Derivative, M	nctions of
Work Placeme	nt	N/A							
Planned Learning Activities and Teaching Methods		Methods	Explanat Problem		tion), Demons	tration, Discu	ssion, Case Stuc	ly,	
Name of Lecturer(s) Ins. Nihal GÜNEL, Lec. Ahn			net GENÇ	c, Lec. Muhan	nmet Ali OKUF	R, Lec. Seçkir	I GÜNSEN		

Assessment Methods and Criteria							
Method		Quantity	Percentage (%)				
Midterm Examination		1	40				
Final Examination		1	70				

Recommended or Required Reading

1	Kenneth A. Ross, Elementary Analysis: The Theory of Calculus, Springer-Verlag(1980)
2	Çoker ., Özer O., Taş K. " Genel Matematik", Cilt 1 (1996)
3	Thomas, G.B. and Finney, R.L., "Calculus and Analytic Geometry", 9th ed., Addison Wesley, (1998)
4	Prof.Dr.Mustafa Balcı "Genel Matematik I" Balcı Yayınları
5	Doç.Dr.Cevdet Cerit,"Yüksek Matematik I"

Week	Weekly Detailed Cours	Veekly Detailed Course Contents					
1	Theoretical	The Definite Integral, The Fundemental Theorem of Calculus					
2	Theoretical	rea Between Curves, Volume Using Cross-Sections					
3	Theoretical	Volume Using Cylindirical Shells, Arc Length					
4	Theoretical	Areas of Surfaces of Revolution, mproper Integrals					
5	Theoretical	Sequences, Infinite Serires					
6	Theoretical	Integral Test, Comparison Tests, Ratio and Root Test					
7	Theoretical	Alternating Series, Absolute and Conditional Convergence, Power Series					
8	Intermediate Exam	Midterm					
9	Theoretical	Taylor ve Maclaurin Series					
10	Theoretical	Convergence of Taylor Series, The Binomial Series and Applications of Taylor Series					
11	Theoretical	Parametric Equations and polar Coordinates, Vectors					
12	Theoretical	Functions of Several Variables, Limits and Continuity in Higher Dimensions					
13	Theoretical	Partial Derivatives, Chain Rule					
14	Theoretical	Directional Derivatives and Gradient Vectors, Tangent Planes and Differentials					
15	Theoretical	Extreme Values and Saddle Points, Lagrange Multipliers					
16	Final Exam	Final Exam					

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	4	4	112
Midterm Examination	1	13	2	15

					Course mormation Form
Final Examination	1		21	2	23
Total Workload (Hours)			150		
[Total Workload (Hours) / 25*] = ECTS 6			6		
*25 hour workload is accepted as 1 ECTS					

Learn	ing Outcomes
1	To be able to comprehend the basic output principle of the definite integral concept
2	To be able to understand the cause and effect relationship between definite and indefinite integrals
3	To be able to apply the integral to real-life usage areas
4	To be able to detect numerical series and convergence tests
5	To be able to calculate partial derivatives of functions of several variables

Programme Outcomes (Physics)

. • .	
1	To understand the importance of physics by understanding the general concepts of physics, matter and energy
2	To be able to define the movements of matter and to distinguish the characteristics of movements under different force (potential)
3	Be able to say the meaning of Lagrange and Hamiltonian formulations of the movement and apply them to simple problems,
4	To be able to express the fundamental concepts such as time, space, force, momentum and energy in the movements of matter close to the speed of light and be able to solve and interpret the simple problems related to
5	To be able to establish the relationship between electric and magnetic forces and to be able to illustrate their applications to technology and solve problems related to the movement of particles in electric and magnetic fields
6	Be able to say the basic laws of electromagnetics and apply them to problems, illustrate their applications to simple technology
7	To be able to tell the reasons of the differences between the classical cases and the quantum scale and explain the reasons
8	Explain the concepts of discontinuity, uncertainty, matter-antimatter, indecisiveness of quantum physics with examples and explain simple problems related to the subject.
9	To be able to solve the problems of micro-particles under different simple potentials and be able to say their meanings
10	To be able to establish the relationship between the movements and properties of multi-particle systems and the laws of probability and solve simple problems
11	To be able to illustrate the laws, meanings and applications of thermodynamics and use them
12	Be able to use their knowledge about quantum physics and mechanics in explaining some properties of atoms and nuclei
13	To be able to show the meanings of some theoretical concepts by experimenting, and develop a strong relationship between thought and the real world, develop analytical thinking
14	To be able to apply the meanings of the basic laws of physics, their comprehension of universality and the relations between them and the unity of the laws of nature.
15	Use computer to solve physics problems
16	To be able to understand the problems by using their analytical knowledge skills and to propose solutions by dealing with the laws of physics
17	Be able to use the knowledge of physics to understand new technologies
18	To be able to tell the relations between symmetry and conservation laws in laws of physics

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

eenning earer						
	L1	L2	L3	L4		
P1	3	2	3	2		
P2	4	4	4	4		
P3	5	3	5	5		
P4	3	4	4	4		
P5	2	2	4	5		
P6	2	3	4	4		
P7	1	3	2	3		
P8	3	4	4	3		
P9	4	2	4	4		
P10	2	3	4	4		
P11	4	2	5	5		
P12	3	2	4	4		
P13	1	1	1	1		
P14	3	3	3	4		
P15	1	1	1	1		

O - · · · · · -	1 6	

P16	2	3	3	5
P17	1	1	2	4
P18	3	3	4	4

