

### AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title                                                                       |   | Differential Equations                                                                                                                                         |                    |                 |                  |                                 |                   |            |   |
|------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|------------------|---------------------------------|-------------------|------------|---|
| Course Code                                                                        |   | MAT253                                                                                                                                                         |                    | Couse Level     |                  | First Cycle (Bachelor's Degree) |                   |            |   |
| ECTS Credit                                                                        | 6 | Workload                                                                                                                                                       | 151 <i>(Hours)</i> | Theory          | 4                | Practice                        | 0                 | Laboratory | 0 |
| Objectives of the Course To introduce the baequations, to teach apply knowledge of |   | teach methods                                                                                                                                                  | s to solve         | differential ec | quations of var  |                                 |                   |            |   |
| Course Content                                                                     |   | Introduction to differential equations, first order differential equations, second order linear equation solutions for system of linear differential equations |                    |                 |                  |                                 | tions,            |            |   |
| Work Placement N/A                                                                 |   | N/A                                                                                                                                                            |                    |                 |                  |                                 |                   |            |   |
| Planned Learning Activities and Teaching Methods                                   |   |                                                                                                                                                                | Explanati          | ion (Presenta   | ition), Discussi | on, Individua                   | al Study, Problem | Solving    |   |
| Name of Lecturer(s) Lec. Ahmet GENÇ, Lec. Se                                       |   | çkin GÜN                                                                                                                                                       | SEN                |                 |                  |                                 |                   |            |   |

| Assessment Methods and Criteria |          |                |  |  |  |  |  |
|---------------------------------|----------|----------------|--|--|--|--|--|
| Method                          | Quantity | Percentage (%) |  |  |  |  |  |
| Midterm Examination             | 1        | 40             |  |  |  |  |  |
| Final Examination               | 1        | 70             |  |  |  |  |  |

## **Recommended or Required Reading**

- 1 Introduction to Ordinary Differential Equations 4 th. Edition, Shepley L. Ross, Wiley, 1989
- 2 Çözümlü Diferansiyel Denklem Problemleri, Doç. Dr. Cevdet Cerit, İ.T.Ü. Fen-Edebiyat Fakültesi, 2009

| Week | Weekly Detailed Cour | se Contents                                                                                                                                                                                                                        |
|------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Theoretical          | Introduction to differential equations, Definitions, Classifications of differential equations, solutions<br>The elimination of arbitrary constants, initial and value problems, Solutions and the existence<br>uniqueness theorem |
| 2    | Theoretical          | First-Order Equations for Which Exact Solutions are Obtainable                                                                                                                                                                     |
| 3    | Theoretical          | Linear Equations and Bernoulli Equations, Special Integrating Factors and Transformations                                                                                                                                          |
| 4    | Theoretical          | Applications of First-Order Equations                                                                                                                                                                                              |
| 5    | Theoretical          | Explicit Methods of Solving Higher-Oreder Linear Differential Equations, Basic Theory of Linear Differential Equations, The Homogeneous Linear Equation with Constant Coefficients                                                 |
| 6    | Theoretical          | The Method of Undetermined Coeeficients, Variation of parameters, The Cauchy-Euler Equation                                                                                                                                        |
| 7    | Theoretical          | Applications of Second-Order Linear Equation with Constant Coefficients                                                                                                                                                            |
| 8    | Intermediate Exam    | Midterm Exam                                                                                                                                                                                                                       |
| 9    | Theoretical          | Series Solutions of Linear Differential Equations                                                                                                                                                                                  |
| 10   | Theoretical          | Solutions About Singular Points; The Method of Frobenius, Bessel's Equations and Bessel Functions                                                                                                                                  |
| 11   | Theoretical          | System of of Linear Differential Equations, Differential operators and an Operator Method                                                                                                                                          |
| 12   | Theoretical          | Basic Theory of Linear system in Normal Form: Two Equations in Two Unknown Functions, homogeneous Linear Systems with Constant Coefficient: Two Equations in Two Unknown Functions                                                 |
| 13   | Theoretical          | Matrices and Vectors, The Matrix method for Homogeneous Linear Systems with Constant Coefficients                                                                                                                                  |
| 14   | Theoretical          | Laplace Transforms                                                                                                                                                                                                                 |
| 15   | Theoretical          | Laplace Transforms Solution of Linear Differential Equations with Constant Coefficients, Laplace Transforms Solution of Linear Systems                                                                                             |

## **Workload Calculation**

| Activity            | Quantity | Preparation | Duration | Total Workload |
|---------------------|----------|-------------|----------|----------------|
| Lecture - Theory    | 14       | 2           | 4        | 84             |
| Midterm Examination | 1        | 25          | 2        | 27             |



|                                         |   |  |                   |                             | Course mormation Fon |
|-----------------------------------------|---|--|-------------------|-----------------------------|----------------------|
| Final Examination                       | 1 |  | 38                | 2                           | 40                   |
| Total Workload (Hours)                  |   |  |                   |                             | 151                  |
|                                         |   |  | [Total Workload ( | Hours) / 25*] = <b>ECTS</b> | 6                    |
| *25 hour workload is accepted as 1 ECTS |   |  |                   |                             |                      |

#### Learning Outcomes

| 1 | Classify differential equations according to certain features                                                                                              |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Solve first order linear equations and nonlinear equations of certain types and interpret the solutions                                                    |
| 3 | Understand the conditions for the existence and uniqueness of solutions for the linear differential equations                                              |
| 4 | Solve second and higher order linear differential equations with constant coefficients and construct all solutions from the linearly independent solutions |
| 5 | To be able to solve higher order linear differential equations                                                                                             |

## Programme Outcomes (Physics)

| 1  | To understand the importance of physics by understanding the general concepts of physics, matter and energy                                                                                                                         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | To be able to define the movements of matter and to distinguish the characteristics of movements under different force (potential)                                                                                                  |
| 3  | Be able to say the meaning of Lagrange and Hamiltonian formulations of the movement and apply them to simple problems,                                                                                                              |
| 4  | To be able to express the fundamental concepts such as time, space, force, momentum and energy in the movements of matter close to the speed of light and be able to solve and interpret the simple problems related to             |
| 5  | To be able to establish the relationship between electric and magnetic forces and to be able to illustrate their applications to technology and solve problems related to the movement of particles in electric and magnetic fields |
| 6  | Be able to say the basic laws of electromagnetics and apply them to problems, illustrate their applications to simple technology                                                                                                    |
| 7  | To be able to tell the reasons of the differences between the classical cases and the quantum scale and explain the reasons                                                                                                         |
| 8  | Explain the concepts of discontinuity, uncertainty, matter-antimatter, indecisiveness of quantum physics with examples and explain simple problems related to the subject.                                                          |
| 9  | To be able to solve the problems of micro-particles under different simple potentials and be able to say their meanings                                                                                                             |
| 10 | To be able to establish the relationship between the movements and properties of multi-particle systems and the laws of probability and solve simple problems                                                                       |
| 11 | To be able to illustrate the laws, meanings and applications of thermodynamics and use them                                                                                                                                         |
| 12 | Be able to use their knowledge about quantum physics and mechanics in explaining some properties of atoms and nuclei                                                                                                                |
| 13 | To be able to show the meanings of some theoretical concepts by experimenting, and develop a strong relationship between thought and the real world, develop analytical thinking                                                    |
| 14 | To be able to apply the meanings of the basic laws of physics, their comprehension of universality and the relations between them and the unity of the laws of nature.                                                              |
| 15 | Use computer to solve physics problems                                                                                                                                                                                              |
| 16 | To be able to understand the problems by using their analytical knowledge skills and to propose solutions by dealing with the laws of physics                                                                                       |
| 17 | Be able to use the knowledge of physics to understand new technologies                                                                                                                                                              |
| 18 | To be able to tell the relations between symmetry and conservation laws in laws of physics                                                                                                                                          |

# Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

|     | L1 | L2 | L3 | L4 | L5 |
|-----|----|----|----|----|----|
| P1  | 4  |    | 4  |    |    |
| P2  | 4  | 4  |    |    |    |
| P13 | 4  | 4  | 4  | 4  |    |
| P14 |    |    |    | 4  | 4  |
| P16 | 4  |    | 4  |    |    |
| P17 | 4  | 4  |    |    |    |

