

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

urse Code CTS Credit 3 viectives of the Course	BSM212 Workload 69 (Hours)	Couse Level Theory 2	First Cycle (Bachelor's Degree)			
	Workload 69 (Hours)	Theony 2				
ectives of the Course		Theory Z	Practice 0 Laboratory 0			
	Objectives of the Course To achieve and learn some basic knowledge about fluid mechanics					
Course Content Introduction, sort of the fluid, characteristics of fluids, aim of fluid mechanics, unit of fluid mechan hydrostatic, kinematics, hydrodynamics, Lagrange and Euler equations, Linear (laminar) flows, T flows, analysis of dimension, model and similitude						
ork Placement	N/A					
anned Learning Activiti	es and Teaching Methods	Explanation (Present	ntation), Discussion, Individual Study, Problem Solving			
me of Lecturer(s)	Assoc. Prof. Ersel YILMAZ					
anned Learning Activiti	flows, analysis of dimension N/A es and Teaching Methods	n, model and similitude Explanation (Present	le			

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	40	
Final Examination	1	70	

Recommended or Required Reading

1 Lecture notes of the lecturer

Week	Weekly Detailed Co	urse Contents		
1	Theoretical	Introduction, Common Units, Definition of Fluid, Comparison with Gases and Solids,		
2	Theoretical	Physical Properties of Fluids		
3	Theoretical	Fluis Statics, Pressure At a Point, Pressure Measurements		
4	Theoretical	Pressure Variation in A Static Fluid,		
5	Theoretical	Forces on Submerged Plane and Curved Surfaces		
6	Theoretical	Forces on Submerged Plane and Curved Surfaces		
7	Theoretical	Fundamentals Of Fluid Kinematics, Uniform Flow And Steady Flow, Streamlines And Stream Tubes , Laminar And Turbulent Flow		
8	Theoretical	Fundamentals Of Fluid Kinematics, Uniform Flow And Steady Flow, Streamlines And Stream Tubes, Laminar And Turbulent Flow		
9	Theoretical	Equation Of Continuity		
10	Theoretical	Bernoulli's Equation and Applications of Bernoulli's Equation, (Torricelli's Theorem, Free Liquid Jet)		
11	Theoretical	Applications of Bernoulli's Equation, , Venturimeter, Pitot Tube		
12	Theoretical	Impulse-Momentum Equation		
13	Theoretical	Application of The Impulse-Momentum Equation		
14	Theoretical	Dimensional Analysis		
15	Theoretical	Dimensional Analysis		
16	Final Exam	Final exam		

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	2	2	56
Midterm Examination	1	5	1	6
Final Examination	1	6	1	7
	69			
[Total Workload (Hours) / 25*] = ECTS				3
*25 hour workload is accorded as 1 ECTS				

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

1 Understanding the properties of fluids

2	Understanding the basics of Fluid statics		
3	Formulating the essential data needed for project designs		
4	Solving flow problems and being able to make necessary sizings for a system		
5	Applications of Bernoulli's Equation, Venturimeter, Pitot Tube		

