

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Modern Diagnostic Techniques in Phytobacteriology							
Course Code	ZBK622		Couse Level Third Cycle (Doctorate Degree)		egree)			
ECTS Credit 7	Workload	175 (Hours)	Theory 2		Practice	2	Laboratory	0
Objectives of the Course	Painting meth	Painting methods for the examination of fungi growth in plant tissues						
Course Content	Using and evaluating serological (double diffusion, immunofluorescence, ELISA) and molecular (PCR, BioPCR, RepPCR, RealtimePCR, qPCR) diagnostic methods that allow the identification and identification of plant pathogen prokaryotes from pure cultures, with or without indication						(PCR,	
Work Placement	N/A							
Planned Learning Activities and Teaching Methods			Explanation Individual St		tion), Experime	ent, Demons	stration, Discussion	١,
Name of Lecturer(s)								

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	10				
Final Examination	1	60				
Assignment	2	10				
Term Assignment	1	20				

Recommended or Required Reading

- Using and evaluating serological (double diffusion, immunofluorescence, ELISA) and molecular (PCR, BioPCR, RepPCR, RealtimePCR, qPCR) diagnostic methods that allow the identification and identification of plant pathogen prokaryotes from pure cultures, with or without indication
- Schaad, N. W. J. B. Jones, W. Chun, Laboratory Guide for Identification of Plant Pathogenic Bacteria, APS Press, St. Paul, Minnesota, ISBN-0-89054-263-5
- 3 Maniatis, T. A., E. F. Fritsch, J. Sambrook, 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, NY.

Week	Weekly Detailed Cours	se Contents
1	Theoretical	a
2	Theoretical	a
3	Theoretical	a
4	Theoretical	a
5	Theoretical	a
6	Theoretical	a
7	Theoretical	a
8	Intermediate Exam	a
9	Theoretical	a
10	Theoretical	a
11	Theoretical	a
12	Theoretical	a
13	Theoretical	a
14	Theoretical	a
15	Final Exam	a

Workload Calculation							
Activity	Quantity	Preparation	Duration	Total Workload			
Lecture - Theory	13	4	2	78			
Assignment	2	10	2	24			
Laboratory	13	2	2	52			
Midterm Examination	1	9	1	10			

Final Examination	1		10	1	11	
			To	tal Workload (Hours)	175	
			[Total Workload (Hours) / 25*] = ECTS	7	
*25 hour workload is accepted as 1 ECTS						

Learni	ng Outcomes	
1		
2		
3		
4		
5		

Programme Outcomes (Plant Protection Doctorate)

- 1 Students improve their knowledge and skill previously gained during first cycle and second cycle programs and become a specialist their own discipline
- 2 Students gain knowledge and experience for using new techniques and equipments in their own discipline.
- 3 Students gain ability to plan and conduct scientific projects in their own discipline by using current knowledge and techniques, and to collect and analyze data and make inference on the results.
- Students gain ability to write scientific articles and prepare them for publications and to make oral or poster presentations in scientific meetings.
- 5 Students gain ability to review scientific articles and projects relevant to their own discipline.
- 6 Students gain experiences how to get effective position in national and international projects.
- 7 Students gain experience for participating in and organizing scientific meetings.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	4	4	4	4
P2	3	3	3	3	3
P3	4	4	4	4	4
P4	5	5	5	5	5
P5	5	5	5	5	5
P6	5	5	5	5	5
P7	4	4	4	4	4

