

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Ionic Equilibria						
Course Code	KİM516	Couse Lev	Couse Level		Second Cycle (Master's Degree)		
ECTS Credit 6	Workload 149 (Hours	s) Theory	3	Practice	0	Laboratory	0
Objectives of the Course	e most import ce is importan , and to make	ant factor fo it. Suitable s them more	or the industry subjects were s efficient in the	, as well as an selected to dev	alysis and synth /elop students' b applications.	es. asic	
Course Content	Identification the law of m general examination of dis to distribution diagrams; p disclosure; redox reaction and precipitation events, s	ass action for ssociation; aci recipitation re s in aqueous such as walkir	homogeneo d-base equ actions, and solutions ar ng with the e	bus and hetero ilibria with the d the resolution ad explanation examination of	geneous reac help of the log of the genera of the theory; the redox equ	tions; the balanc arithmic type of a al theory of the ba the complex form ilibria.	e of the approach alance of nation
Work Placement	/ork Placement N/A						
Planned Learning Activities and Teaching Methods		Explanatio	n (Presenta	tion), Discussi	on, Project Ba	sed Study	
Name of Lecturer(s)							

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination		1	20
Final Examination		1	60
Seminar		3	20

Recommended or Required Reading

1	Analytical Chemistry, 4th Edition, Gary D. Christian, John Wiley and Sons, Inc., 1986.
2	Fundemental of Analytical Chemistry, Douglas A. Skoog and Donald M. West, Sounders College Publishing, 1982
3	Chemical Analysis, Herbert A. Laitinen and Walter E. Harris, Mc Graw- Hill Series in Advanced Chemistry, 1975
4	Analytical Chemistry, Basic Charts, and Huriye Afsar Husain Meets, Scion Publishing, 1994

Week	Weekly Detailed Course Contents						
1	Theoretical	Ionization equilibrium and percent of ionization					
3	Theoretical	Factors that affect ionization equilibrium of salt;common -ion effect, salt effect, pH effect,formation of complex ions					
4	Theoretical	Factors that affect ionization equilibrium of salt;common -ion effect, salt effect, pH effect,formation of complex ions					
5	Theoretical	Electro nötrralite; Proton condition; Ionization equilibrium of mono and polyfunctional acids					
6	Theoretical	Ionization equilibrium of Lewis acids and bases					
7	Theoretical	Calculating dissociation equilibria of polyfunctional acids					
8	Intermediate Exam	Midterm Exam					
9	Theoretical	Calculating dissociation equilibria of polyfunctional acids					
10	Theoretical	Calculating redox equilibrium constants					
11	Theoretical	Choosing solvent to neutralization titrations					
12	Theoretical	Obtaining to dissociation constant of coordination compounds					
13	Theoretical	Obtaining to dissociation constant of coordination compounds					
14	Theoretical	Student Presentations					
15	Theoretical	Student Presentations					
16	Final Exam	Final Exam					

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	0	3	42
Seminar	3	25	1	78
Midterm Examination	1	10	2	12

Courso	Information	Form
Course		FUIII

Final Examination	1		15	2	17	
	Total Workload (Hours)				149	
			[Total Workload (Hours) / 25*] = ECTS	6	
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes

Louin				
1	An ability to apply knowledge of mathematics, science	e an	d engineering in the field of chemistry and chemical engineering	
2	Process design skills			
3	Ability to examine and improve the system			
4	Ability to comprehend balance systems			
5	Ability to solve balance problems			

Programme Outcomes (Chemistry Master)

1	To be able to gain proficiency in depths and analysis by statistical methods in the same or a related area depending on the undergraduate competence,.
2	To be able to use the knowledge of his/her field and the skills to solve problems and/or applications in interdisciplinary research.
3	To be able to adopt to evaluate the information and skill his/her field by critical approach.
4	To be able to evaluate the effect of important persons, case and fact on his/her field applications.
5	To be able to gain the ability to discuss write and orally present to a group of literate listener.
6	To be able to communicate orally and written in a foreign language at least at European language B2 level.
7	To be able to use computer programs related to his/her field and have skills for informatics communication.
8	To be able to be careful in protecting social, scientific and cultural ethics in collection data, application and presentation.
9	To be able to develop strategic, political and application plans in his/her field and may evaluate the outcomes in quality periods.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	4	5	5	4	5
P2	4	5	5	5	5
P3	4	5	5	4	4
P4	4	5	5	4	4
P5	4	5	5	4	4