

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Point Groups	and Application	ons					
Course Code		KİM533		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 6 Workload		Workload	150 <i>(Hours)</i>	Theory	3	Practice	0	Laboratory	0
Objectives of the Course The concept of symmetry, expoint groups based on the priteaching of molecular vibration issues of selection rules.				principles of	group theor	y, reducible re	presentation	ns and character ta	ables,
Course Content Determine the point group of determine of chirality, symmetry hybridazition and spectrosocial determine of chirality.			netry propert	ies of mole					
Work Placement N/A									
Planned Learning Activities and Teaching Methods			Explanation	n (Presenta	tion), Discussi	on, Problem	Solving		
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination		1	20
Final Examination		1	60
Quiz		4	10
Assignment		4	10

Recommended or Required Reading

	1	Cemal Kaya, Duran Karakaş, Moleküler Simetri, Palme yayınevi, 2009-Ankara.
[2	F.A. Cotton, "Chemical Applications of Group Theory", Wiley -Interscience.

Week	Weekly Detailed Cour	se Contents					
1	Theoretical	troduction to symmetry: the concept of symmetry, symmetry terms.					
2	Theoretical	VSEPR model, formulas and isomerism					
3	Theoretical	Symmetry elements and symmetry operations					
4	Theoretical	Point groups					
5	Theoretical	Chiral molecules and optical activity					
6	Theoretical	Irreducible representations					
7	Theoretical	Character tables					
8	Preparation Work	General review on topics					
	Intermediate Exam	Midterm Exam					
9	Theoretical	Basic types of vibration modes and symmetry					
10	Theoretical	Infrared and Raman activity					
11	Theoretical	Linear combination of atomic orbitals (LCAO) approach					
12	Theoretical	Molecular orbitals					
13	Theoretical	Creation of the molecular orbital energy diagram with the character tables.					
14	Theoretical	Molecular orbital energy diagram					
15	Theoretical	Electronic states and selection rules					
16	Preparation Work	General review on topics					
	Final Exam	Final Exam					

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	0	3	42	
Assignment	4	6	0	24	
Reading	1	0	30	30	
Quiz	4	4	1	20	

0	1	
	Informati	

Midterm Examination	1		10	2	12		
Final Examination	1 20		20	2	22		
	150						
	6						
*25 hour workload is accepted as 1 ECTS							

Learr	ning Outcomes
1	to be able to recognize the molecular structure, Lewis structure and resonance.
2	to be able to apply symmetry elements and symmetry operations to any molecule.
3	to be able to analyse the classification of point groups.
4	to be able to set up the creation of the character table.
5	to be able to determine whether the molecule is chiral or not.
6	to be able to identify IR and Raman spectrums according to the point groups.
7	to be able to define the type of hybridization of the molecule.
8	to be able to apply the Crystal Field Theory to the molecule and tell splitting depending on the geometry .
9	to be able to draw a diagram of the molecular orbital energy of the molecule.
10	to be able to compose atomic terms and recognize the rules regarding selection of spectroscopic transitions.

Programme Outcomes (Chemistry Master)

1	To be able to gain proficiency in depths and analysis by statistical methods in the same or a related area depending on the undergraduate competence,.
2	To be able to use the knowledge of his/her field and the skills to solve problems and/or applications in interdisciplinary research.
3	To be able to adopt to evaluate the information and skill his/her field by critical approach.
4	To be able to evaluate the effect of important persons, case and fact on his/her field applications.
5	To be able to gain the ability to discuss write and orally present to a group of literate listener.
6	To be able to communicate orally and written in a foreign language at least at European language B2 level.
7	To be able to use computer programs related to his/her field and have skills for informatics communication.
8	To be able to be careful in protecting social, scientific and cultural ethics in collection data, application and presentation.
9	To be able to develop strategic, political and application plans in his/her field and may evaluate the outcomes in quality periods.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10
P1	5	5	5	5	5	5	5	5	5	5
P2	5	5	5	5	5	5	5	5	5	4
P3	5	5	5	5	5	5	5	5	5	5
P5	3	3	3	3	3	3	3	3	3	3
P9	4	4	4	4	4	4	4	4	4	4

