

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Chemical Thermodynamics								
Course Code	KİM545		Couse Lev	⁄el	Second Cycle (Master's Degree)			
ECTS Credit 6	Workload	150 (Hours)	Theory	3	Practice 0		Laboratory	0
Objectives of the Course					ntend to go on to the hermodynamics	ne		
Course Content	basic thermod some of the e	lynamic laws, vents in our ei	relationship nvironment	with daily lal with the b	ife of the laws of	of thermody ermodynami	mixtures, kinetic ganamic, trying to exic, the states of the	plain that
Work Placement	N/A							
Planned Learning Activities and Teaching Methods			Explanation	n (Presenta	ition), Discussio	on, Problem	Solving	
Name of Lecturer(s)								

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	20				
Final Examination	1	60				
Assignment	4	20				

Reco	mmended or Required Reading
1	Physical Chemistry, P. W. ATKINS
2	Physical Chemistry, Ira N. LEVINE
3	Kimyasal Termodinamik, N. K. TUNALI, B. R. TÜRKMEN
4	Physical Chemistry of Polymers, A. TAGER
5	Physical Chemistry of Macromolecules, S. F. SUN, Introduction to Physical Polymer Science, L. H. SPERLING

Week	Weekly Detailed Cour	se Contents				
1	Theoretical	Heat, work and energy				
2	Theoretical	Thermodynamic equilibrium and thermodynamic properties				
3	Theoretical	The first law of thermodynamics				
4	Theoretical	Energy, Entalphy and Heat capacities				
5	Theoretical	The Hess's law, Standart entalphy chancing, Bonding energy				
6	Theoretical	The second law of thermodynamics				
7	Intermediate Exam	Midterm exam				
8	Theoretical	Reversible transformations, Entropy				
9	Theoretical	Carnot cycle				
10	Theoretical	The absolute entropy				
11	Theoretical	Free energy and Chemical Equilibrium				
12	Theoretical	Mixtures and free energy				
13	Theoretical	The chancing of free energy at chemical reactions				
14	Theoretical	Equilibrium constant and chancing with temperature				
15	Theoretical	Colligative properties				
16	Final Exam	FINAL EXAM				

Workload Calculation				
Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	0	3	42
Assignment	4	0	8	32
Reading	1	0	37	37
Quiz	1	2	4	6
Midterm Examination	1	12	2	14

Final Examination	1		16	3	19		
			To	tal Workload (Hours)	150		
[Total Workload (Hours) / 25*] = ECTS 6							
*25 hour workload is accepted as 1 ECTS							

Learn	ing Outcomes					
1	To teach the basics of thermodynamics					
2	The ideal gas law and properties of gas mixtures					
3	The kinetic gas theory and basic thermodynamic laws					
4	The relations between daily life and the laws of thermodynamic					
5	to be able to explain the events in our environment with the basic laws of thermodynamic					
6	The states of the matter, phase diagrams, transition thermodynamics of the materials					
7	The viscosity of gases					
8	to be able to explain the deviation from ideals					
9	The Real gases					

Progr	amme Outcomes (Chemistry Master)
1	To be able to gain proficiency in depths and analysis by statistical methods in the same or a related area depending on the undergraduate competence,.
2	To be able to use the knowledge of his/her field and the skills to solve problems and/or applications in interdisciplinary research.
3	To be able to adopt to evaluate the information and skill his/her field by critical approach.
4	To be able to evaluate the effect of important persons, case and fact on his/her field applications.
5	To be able to gain the ability to discuss write and orally present to a group of literate listener.
6	To be able to communicate orally and written in a foreign language at least at European language B2 level.
7	To be able to use computer programs related to his/her field and have skills for informatics communication.
8	To be able to be careful in protecting social, scientific and cultural ethics in collection data, application and presentation.
9	To be able to develop strategic, political and application plans in his/her field and may evaluate the outcomes in quality periods.

Contri	bution	of Lea	rning (Outcon	nes to I	Progra	mme C	utcom	es 1:Ve	ery Low, 2:Low, 3:Medium, 4:High, 5:Very High
	L1	L2	L3	L4	L5	L6	L7	L8	L9	
P1	5	5	5	5	5	5	5	5	5	
P2	5	4	5		3	3	3	3	3	
P3	5	4	5		3	3	3	3	3	
P4	5	4	4		3	3	3	3		
P5	5	3	5		3	3	3	3		
P6	5	3								
P8				4						
P9	4	4								

