

# AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title                                         |   | Methods in Enzymatic Analysis                                                                                      |                    |             |        |                |                                |                     |    |   |
|------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------|--------------------|-------------|--------|----------------|--------------------------------|---------------------|----|---|
| Course Code                                          |   | KİM558                                                                                                             |                    | Couse Level |        |                | Second Cycle (Master's Degree) |                     |    |   |
| ECTS Credit                                          | 6 | Workload                                                                                                           | 149 <i>(Hours)</i> | Theory      | 3      | 5              | Practice 0 Laboratory          |                     |    | 0 |
| Objectives of the Course                             |   | This course aims to teach the graduate students how to deal with the principles and methods of enzymatic analysis. |                    |             |        |                |                                |                     |    |   |
| Course Content                                       |   | It presents theoretical knowledge as well as principles that are necessary for practical work.                     |                    |             |        |                |                                |                     |    |   |
| Work Placement                                       |   | N/A                                                                                                                |                    |             |        |                |                                |                     |    |   |
| Planned Learning Activities and Teaching Methods Exp |   |                                                                                                                    | Explana            | ation (Pres | entati | ion), Discussi | on, Case Stu                   | dy, Individual Stud | dy |   |
| Name of Lecturer(s)                                  |   |                                                                                                                    |                    |             |        |                |                                |                     |    |   |

#### **Assessment Methods and Criteria**

| Method              | Quantity | Percentage (%) |  |
|---------------------|----------|----------------|--|
| Midterm Examination | 1        | 20             |  |
| Final Examination   | 1        | 35             |  |
| Assignment          | 3        | 45             |  |

# **Recommended or Required Reading**

| 1 | Principles of Enzymatic Analysis, H. U. Bergmeyer, K. Gawehn, 1978, Werlag Chemie, ISBN 3-527-25678-4                  |  |
|---|------------------------------------------------------------------------------------------------------------------------|--|
| 2 | Enzim Bilgisi, 1994. Understanding Enzymes'dan çeviren S. Cengiz, M. Cengiz. Bilimsel ve Teknik Yayınları Çevri Vakfı. |  |

| Week | Weekly Detailed Course Contents |                                                           |  |  |  |  |  |  |
|------|---------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|
| 1    | Theoretical                     | Terminology, importance and limits of enzymatic analysis. |  |  |  |  |  |  |
| 2    | Theoretical                     | Theoretical principles: Reaction kinetics.                |  |  |  |  |  |  |
| 3    | Theoretical                     | Determination of Michaelis constant.                      |  |  |  |  |  |  |
| 4    | Theoretical                     | Determination of metabolites.                             |  |  |  |  |  |  |
| 5    | Theoretical                     | Determination of catalytic activity of enzymes.           |  |  |  |  |  |  |
| 6    | Theoretical                     | NAD(P) – dependant reactions.                             |  |  |  |  |  |  |
| 7    | Theoretical                     | Principles of enzyme – immunoassays.                      |  |  |  |  |  |  |
| 8    | Theoretical                     | Reagents for enzymatic analysis.                          |  |  |  |  |  |  |
| 9    | Theoretical                     | Sample handling.                                          |  |  |  |  |  |  |
| 10   | Intermediate Exam               | Midterm                                                   |  |  |  |  |  |  |
| 11   | Theoretical                     | Absorption photometry.                                    |  |  |  |  |  |  |
| 12   | Theoretical                     | Automation of analysis.                                   |  |  |  |  |  |  |
| 13   | Theoretical                     | Enzymatic analysis with radiobiochemicals.                |  |  |  |  |  |  |
| 14   | Theoretical                     | Evaluation of experimental results.                       |  |  |  |  |  |  |
| 15   | Theoretical                     | Discussion                                                |  |  |  |  |  |  |
| 16   | Final Exam                      | Final exam                                                |  |  |  |  |  |  |

# **Workload Calculation**

| Activity                                     | Quantity | Preparation |    | Duration |  | Total Workload |
|----------------------------------------------|----------|-------------|----|----------|--|----------------|
| Lecture - Theory                             | 14       |             | 0  | 3        |  | 42             |
| Assignment                                   | 5        |             | 0  | 5        |  | 25             |
| Midterm Examination                          | 1        |             | 48 | 2        |  | 50             |
| Final Examination                            | 1        |             | 30 | 2        |  | 32             |
| Total Workload (Hours)                       |          |             |    |          |  | 149            |
| [Total Workload (Hours) / 25*] = <b>ECTS</b> |          |             |    |          |  | 6              |
| *25 hour workload is accepted as 1 ECTS      |          |             |    |          |  |                |

\*25 hour workload is accepted as 1 ECTS

### Learning Outcomes

1 to be able to define the terminology of enzymology.



| 3    | to be able to identify the principles of enzymatic analysis.                                                                                           |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4    | to be able to acquire knowledge on how to evaluate the results of enzymatic analysis.                                                                  |
| 5    | to able to acquire knowledge about special enzymatic techniques                                                                                        |
|      |                                                                                                                                                        |
| Prog | ramme Outcomes (Chemistry Master)                                                                                                                      |
| 1    | To be able to gain proficiency in depths and analysis by statistical methods in the same or a related area depending on the undergraduate competence,. |
| 2    | To be able to use the knowledge of his/her field and the skills to solve problems and/or applications in interdisciplinary research.                   |
| 3    | To be able to adopt to evaluate the information and skill his/her field by critical approach.                                                          |
| 4    | To be able to evaluate the effect of important persons, case and fact on his/her field applications.                                                   |
| 5    | To be able to gain the ability to discuss write and orally present to a group of literate listener.                                                    |
| 6    | To be able to communicate orally and written in a foreign language at least at European language B2 level.                                             |
| 7    | To be able to use computer programs related to his/her field and have skills for informatics communication.                                            |
| 8    | To be able to be careful in protecting social, scientific and cultural ethics in collection data, application and presentation.                        |
| 9    | To be able to develop strategic, political and application plans in his/her field and may evaluate the outcomes in quality period                      |

### Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

|    | L1 | L2 | L3 | L4 | L5 |  |  |  |
|----|----|----|----|----|----|--|--|--|
| P1 | 5  | 5  | 5  | 5  | 5  |  |  |  |
| P2 | 4  | 4  |    | 5  | 5  |  |  |  |
| P3 | 3  |    |    |    |    |  |  |  |
| P4 |    |    | 5  | 5  | 5  |  |  |  |
| P5 | 4  |    | 3  |    | 4  |  |  |  |
| P7 | 3  |    | 3  |    | 4  |  |  |  |

to be able to recognize Michaelis-Menten kinetics.

2



Course Information Form