

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Atomic Spectrometry								
Course Code	KİM613		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 8	Workload	201 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course Teach the techniques of of mo				nic				
Course Content	Essentials and scope of atomic spectroscopy; Evaluation of analytical data in atomic spectroscopy; measurement and precision reporting analytical results; Measurement techniques in atomic spectroscopy; Background correction methods in atomic spectroscopy; Solving problems related to determinations by atomic spectrometry							
Work Placement N/A								
Planned Learning Activities and Teaching Methods			Explanation	(Presenta	tion), Problem	Solving		
Name of Lecturer(s)								

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	20				
Final Examination	1	60				
Assignment	4	20				

Recommended or Required Reading

1 Lecturer notes (Prof.Dr. Mustafa DEMIR)

Week	Weekly Detailed Cour	se Contents			
1	Theoretical	Electrothermal AAS instrumentation, pyrolysis atomisation graphics, initiatives, D2 and Zeeman background correction ETAAS effective comparison			
2	Theoretical	Matrix modifiers, STPF concept ETAAS determination limits areas			
3	Theoretical	Plasma-type atom-ion sources ICP-OES instrumentation techniques, axial, radial designs			
4	Theoretical	Sequential and simultaneous ICP-OES youth optics and detector systems designs			
5	Theoretical	Strategies for multi-element determination, calibration techniques, determined the boundaries, initiatives			
6	Theoretical	CP-MS, Mass General information about detectors, quadrupole-ICP-MS, ICP-TOF-MS nstrumentation, initiatives			
7	Theoretical	Alternatively, the sample transfer methods, establish hydride (HO)-trapped ETAAS, ICP-OES HO HO-ICP-MS, an alternative to plasma spectrometry sample transfers, ETV-ICP-OES, ETV-ICP-MS, advantages, application areas			
8	Intermediate Exam	Midterm Exam			
9	Theoretical	Slurry with solutions AAS, ICP-OES, ICP-MS studies			
10	Theoretical	With the direct analysis of solid samples, preparation of standard analytical approaches ETAAS, ICP-OES, ICP-MS studies			
11	Theoretical	Laser etching and plasma spectrometer, instrumentation			
12	Theoretical	Chromatography-plasma techniques, speciation studies, flow injection and on-line solid phase extraction systems			
13	Theoretical	Overall Rating, automated availability, the ability to multi-element, designated boundaries, the operating costs			
14	Theoretical	Student Presentations			
15	Theoretical	Student Presentations			
16	Final Exam	Final Exam			

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	0	3	42		
Assignment	4	20	1	84		
Term Project	1	25	2	27		
Midterm Examination	1	20	1	21		

Final Examination	1		25	2	27
			To	tal Workload (Hours)	201
			[Total Workload (Hours) / 25*] = ECTS	8
*25 hour workload is accepted as 1 ECTS					

Leari	ning Outcomes
1	Learning new techniques in atomic ultra trace level atomic spectroscopy
2	Information on analytical approaches have been adopted in
3	Deney tasarlama ve sonuçları yorumlama becerisi kazanılması
4	Acquisition of process design skills
5	Gaining the ability to examine and improve the system

Prog	ramme Outcomes (Chemistry Doctorate)
1	Depending on the master degree competences, develops, insights and innovates current and advanced knowledge and/or research in proficiency level.
2	Gains high skill levels in using research methods in the field of his/her study.
3	Comprehends the interaction between disciplines related to his/her field. Reaches to original results using his/her expertise in order to analyze, synthesize and evaluate new and complicated ideas.
4	Enlarges the boundaries of his/her field of knowledge by publishing at least one research paper in national and/or international peer-reviewed journals.
5	Defends his/her original opinions related to his/her field before authority and communicates effectively illustrating his/her competence.
6	May communicate and debate written, orally and visually in European Language Portfolio level C1.
7	Follows the developments in computer software and information and communication technologies developed for his/her research area and uses these in order to solve research problems.
8	Collaborates for scientific research with national and international research teams.

Contributes to the course of creation and maintenance of knowledge based society and by introducing the scientific, social and cultural developments to the society he/she is living in.

Contri	ibution	of Lea	rning (Outcon	nes to l	Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High
	L1	L2	L3	L4	L5	
P1	4	5	5	4	5	
P2	4	5	5	4	5	
P3	4	5	5	4	5	
P4	4	5	5	4	5	
P5	4	5	5	4	5	

