

### AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title                                     |        | Avanced Volta                   | ammetric Tech                    | nniques                         |                           |                                |                          |                                                                                   |     |
|--------------------------------------------------|--------|---------------------------------|----------------------------------|---------------------------------|---------------------------|--------------------------------|--------------------------|-----------------------------------------------------------------------------------|-----|
| Course Code                                      |        | KİM616                          |                                  | Couse Level                     |                           | Third Cycle (Doctorate Degree) |                          |                                                                                   |     |
| ECTS Credit                                      | 10     | Workload                        | 250 (Hours)                      | Theory                          | 3                         | Practice                       | 0                        | Laboratory                                                                        | 0   |
| Objectives of the Course                         |        | The aim of thi<br>electrochemic |                                  | provide basic                   | c informati               | ion about the the              | ermodynam                | nics and kinetics of                                                              |     |
| Course Content                                   |        | concepts and investigated e     | equations are<br>specially in re | related to in<br>lation to cher | dividual te<br>nical anal | chniques. Vario                | us voltamm<br>used in vo | n detail and the res<br>netric techniques is<br>Itammetry and mod<br>emonstrated. | U U |
| Work Placement N/A                               |        |                                 |                                  |                                 |                           |                                |                          |                                                                                   |     |
| Planned Learning Activities and Teaching Methods |        | Explanation                     | (Presenta                        | ation), Individual              | l Study, Pro              | blem Solving                   |                          |                                                                                   |     |
| Name of Lectu                                    | rer(s) |                                 |                                  |                                 |                           |                                |                          |                                                                                   |     |

### **Assessment Methods and Criteria**

| Method              | Quantity | Percentage (%) |  |
|---------------------|----------|----------------|--|
| Midterm Examination | 1        | 20             |  |
| Final Examination   | 1        | 35             |  |
| Assignment          | 3        | 45             |  |

#### **Recommended or Required Reading**

| 1 | Analytical Electrochemistry. 2nd Ed. J. Wang. Wiley-VCH, Newyork, 2000.                                              |
|---|----------------------------------------------------------------------------------------------------------------------|
| 2 | Laboratory Techniques in Electroanalytical chemistry. 2nd Ed. Eds: P. Kissinger and W. Heineman, Marcel-Dekker, 1996 |
| 3 | Electroanalytical Methods. Ed: F. Scholz. Springer, 2002                                                             |

| Week | Weekly Detailed Co | Veekly Detailed Course Contents             |  |  |  |  |
|------|--------------------|---------------------------------------------|--|--|--|--|
| 1    | Theoretical        | Electrical double layer                     |  |  |  |  |
| 2    | Theoretical        | Thermodynamics of electrochemical reactions |  |  |  |  |
| 3    | Theoretical        | Kinetics of electrochemical reactions       |  |  |  |  |
| 4    | Theoretical        | Cyclic voltammetry                          |  |  |  |  |
| 5    | Theoretical        | Pulse voltammetry                           |  |  |  |  |
| 6    | Theoretical        | Square-wave voltammetry. Quiz-1             |  |  |  |  |
| 7    | Theoretical        | Chronocoulometry                            |  |  |  |  |
| 8    | Theoretical        | Electrochemical impedance spectroscopy      |  |  |  |  |
| 9    | Theoretical        | Student presentations. Discuss              |  |  |  |  |
| 10   | Theoretical        | Stripping voltammetry                       |  |  |  |  |
| 11   | Theoretical        | UV/Vis/NIR spectroelectrochemistry. Quiz-2  |  |  |  |  |
| 12   | Theoretical        | Electrodes: Working and reference           |  |  |  |  |
| 13   | Theoretical        | Chemically modified electrodes              |  |  |  |  |
| 14   | Theoretical        | Electrolytes and experimental setup         |  |  |  |  |
| 15   | Theoretical        | Student presentations. Discuss              |  |  |  |  |
| 16   | Final Exam         | Final exam                                  |  |  |  |  |

## **Workload Calculation**

| Activity            | Quantity | Preparation | Duration | Total Workload |
|---------------------|----------|-------------|----------|----------------|
| Lecture - Theory    | 14       | 0           | 3        | 42             |
| Assignment          | 5        | 0           | 20       | 100            |
| Midterm Examination | 1        | 48          | 2        | 50             |



| ~      |  |      |
|--------|--|------|
| Course |  | Form |
|        |  |      |

| Final Examination                            | 1 |  | 56 | 2   | 58 |
|----------------------------------------------|---|--|----|-----|----|
| Total Workload (Hours)                       |   |  |    | 250 |    |
| [Total Workload (Hours) / 25*] = <b>ECTS</b> |   |  |    | 10  |    |
| *25 hour workload is accepted as 1 ECTS      |   |  |    |     |    |

| Learn | ning Outcomes                                                                                           |
|-------|---------------------------------------------------------------------------------------------------------|
| 1     | To understand electrochemical reactions in kinetics and termodynamics theories.                         |
| 2     | To discuss and compare puls and square-wave voltammetries in chemical analysis.                         |
| 3     | To learn the basics of impedans spectrometry and examine some applications.                             |
| 4     | To learn the basics of spectroelectrochemistry.                                                         |
| 5     | To review general knowledge about electrodes, electrolites etc. used in electroanalytical laboratories. |

# Programme Outcomes (Chemistry Doctorate)

| • |                                                                                                                                                                                                       |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Depending on the master degree competences, develops, insights and innovates current and advanced knowledge and/or research in proficiency level.                                                     |
| 2 | Gains high skill levels in using research methods in the field of his/her study.                                                                                                                      |
| 3 | Comprehends the interaction between disciplines related to his/her field. Reaches to original results using his/her expertise in order to analyze, synthesize and evaluate new and complicated ideas. |
| 4 | Enlarges the boundaries of his/her field of knowledge by publishing at least one research paper in national and/or international peer-reviewed journals.                                              |
| 5 | Defends his/her original opinions related to his/her field before authority and communicates effectively illustrating his/her competence.                                                             |
| 6 | May communicate and debate written, orally and visually in European Language Portfolio level C1.                                                                                                      |
| 7 | Follows the developments in computer software and information and communication technologies developed for his/her research area and uses these in order to solve research problems.                  |
| 8 | Collaborates for scientific research with national and international research teams.                                                                                                                  |
| 9 | Contributes to the course of creation and maintenance of knowledge based society and by introducing the scientific, social and cultural developments to the society he/she is living in.              |
|   |                                                                                                                                                                                                       |

# Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

|    | L1 | L2 | L3 | L4 | L5 |
|----|----|----|----|----|----|
| P1 | 4  | 4  | 4  | 4  |    |
| P2 | 4  | 4  | 4  | 4  | 4  |
| P3 | 3  | 3  | 3  | 3  |    |
| P5 | 3  | 3  | 3  | 3  | 2  |