

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Advanced Organometallics	Chemistry				
Course Code	KİM628 Couse Level Third Cycle (Doctorate Degree)					
ECTS Credit 10 Workload 252 (I		Theory 3	Practice	0	Laboratory	0
Objectives of the Course	metallic compo nderstand the r ometallics mair	nechanism of				
Course Content	The binding models in orga (hydrogenation reactions, h reactions (carbon-carbon-bi- carbonylation reactions, and organometallic catalysis to	ydrosilylation reactions ond forming reactions, d carbon-hydrogen bon	, and hydrobora carbon-heteroa	ation reactions atom bond form	s) and coupling ming reactions,	
Work Placement	N/A					
Planned Learning Activities and Teaching Methods		Explanation (Presenta	ition), Discussio	on, Problem S	olving	
Name of Lecturer(s)						

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	20				
Final Examination	1	60				
Quiz	4	10				
Assignment	4	10				

Recommended or Required Reading

- 1 P.W.N.M. van Leeuwen, Homogeneous Catalysis, Kluwer Academic Publishers, Dordrecht 2004.
- 2 N. Miyaura, Cross-Coupling Reactions, Springer 2002.

Week	Weekly Detailed Cours	se Contents
1	Theoretical	
2	Theoretical	
3	Theoretical	
4	Theoretical	
5	Theoretical	
6	Theoretical	
7	Theoretical	
8	Theoretical	
9	Theoretical	
10	Intermediate Exam	
11	Theoretical	
12	Theoretical	
13	Theoretical	
14	Theoretical	
15	Final Exam	
16	Final Exam	

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	0	3	42		
Assignment	7	10	0	70		
Reading	1	0	40	40		
Quiz	4	8	1	36		

Midterm Examination	1	20	2	22
Final Examination	1	40	2	42
Total Workload (Hours)				
	10			
*25 hour workload is accepted as 1 ECTS				

Learni	ing Outcomes	
1		
2		
3		
4		
5		
6		
7		

Programme Outcomes (Chemistry Doctorate)

- Depending on the master degree competences, develops, insights and innovates current and advanced knowledge and/or research in proficiency level.
- 2 Gains high skill levels in using research methods in the field of his/her study.
- Comprehends the interaction between disciplines related to his/her field. Reaches to original results using his/her expertise in order to analyze, synthesize and evaluate new and complicated ideas.
- Enlarges the boundaries of his/her field of knowledge by publishing at least one research paper in national and/or international peer-reviewed journals.
- 5 Defends his/her original opinions related to his/her field before authority and communicates effectively illustrating his/her competence.
- 6 May communicate and debate written, orally and visually in European Language Portfolio level C1.
- Follows the developments in computer software and information and communication technologies developed for his/her research area and uses these in order to solve research problems.
- 8 Collaborates for scientific research with national and international research teams.
- Contributes to the course of creation and maintenance of knowledge based society and by introducing the scientific, social and cultural developments to the society he/she is living in.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	L6	L7
P1	4	5	4	5	4	5	4
P2	4	5	4	5	4	5	4
P3	4	5	4	5	4	5	4
P4	4	5	4	5	4	5	4
P5	4	5	4	5	4	5	4

