

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Crystal Solids							
Course Code	KİM633		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 8	Workload	195 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course The aim of this course is to study the structure and properties of crystal solids formed atoms, ions and molecules that are packed in geometrical arrangement.					ns and			
Course Content Crystal Geometry: Crystal Lattices, Crystal Structure: Classification, Closest Packing, Packing Of Compounds, Determination Of Crystal Structure: Diffraction In Crystals (X-Ray, Electron And Neutron), Reuntgen Spectrometry, Crystal Chemistry: Crystal Lattice Defects, Structural Lattice Defects, Chemical Lattice Defects, The Effect Of Lattice Defects On Diffusion, The Effect Of Lattice Defects On Crystal Growth.					f			
Work Placement	N/A							
Planned Learning Activities and Teaching Methods		Methods	Explanation	(Presenta	tion), Discussi	on, Individua	l Study, Problem S	Solving
Name of Lecturer(s)								

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	40			
Final Examination	1	60			

Recommended or Required Reading

Miessler, G. L., Tarr, D. A. (Çeviri Editörleri: Karacan, N., Gürkan, P.). İnorganik Kimya. (2002). Palme Yayınları-Ankara
Shriver D.F., Atkins P. W., Langford C. H., (1991) Inorganic Chemistry, Oxford Chemistry,
Cotton, F. A. and Wilkinson, G. (1980) Advanced Inorganic Chemistry, John Wiley & Sons, New York, Fourth Edition
Huheey J.E., Keiter E.A., Keiter R.L., (1993) Inorganic Chemistry, 4th Ed., HarperCollins,

Week	Weekly Detailed Course Contents				
1	Theoretical	Crystal Geometry: Crystal Lattices			
2	Theoretical	Crystal Structure: Classification			
3	Theoretical	Closest Packing, Packing Of Compounds			
4	Theoretical	Determination Of Crystal Structure: Diffraction In Crystals (X-Ray, Electron And Neutron)			
5	Theoretical	Reuntgen Spectrometry			
6	Theoretical	Crystal Chemistry			
7	Theoretical	Crystal Lattice Defects			
8	Intermediate Exam	Midterm Exam			
9	Theoretical	Structural Lattice Defects			
10	Theoretical	Chemical Lattice Defects			
11	Theoretical	Electrical Lattice Defects			
12	Theoretical	The Effect Of Lattice Defects On Diffusion			
13	Theoretical	The Effect Of Lattice Defects On Crystal Growth			
14	Theoretical	Student Presentations			
15	Theoretical	Student Presentations			
16	Final Exam	Final Exam			

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	0	3	42		
Assignment	4	15	2	68		
Reading	1	20	1	21		
Midterm Examination	1	30	2	32		

Final Examination	1		30	2	32
	Total Workload (Hours) 195				195
			[Total Workload (Hours) / 25*] = ECTS	8
*25 hour workload is accepted as 1 ECTS					

Learn	Learning Outcomes								
1	Knows the basic concepts of crystal geometry								
2	Learn the structure and classification of crystals								
3 Learn the causes of crystal, structural, electrical and chemical mesh defects,									
4	Learn the effects of mesh defects.								

Progra	amme Outcomes (Chemistry Doctorate)
1	Depending on the master degree competences, develops, insights and innovates current and advanced knowledge and/or research in proficiency level.
2	Gains high skill levels in using research methods in the field of his/her study.
3	Comprehends the interaction between disciplines related to his/her field. Reaches to original results using his/her expertise in order to analyze, synthesize and evaluate new and complicated ideas.

- Enlarges the boundaries of his/her field of knowledge by publishing at least one research paper in national and/or international peer-reviewed journals.

 Defends his/her original opinions related to his/her field before authority and communicates effectively illustrating his/her
- 5 competence.
- 6 May communicate and debate written, orally and visually in European Language Portfolio level C1.
- Follows the developments in computer software and information and communication technologies developed for his/her research area and uses these in order to solve research problems.
- 8 Collaborates for scientific research with national and international research teams.
- Contributes to the course of creation and maintenance of knowledge based society and by introducing the scientific, social and cultural developments to the society he/she is living in.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	LT	L2	L3	L4	L5
P1	4	4	4	4	4
P2	4	4	4	4	4
P3	4	4	4	4	4
P4	4	4	4	4	4
P5	4	4	4	4	4

Examine articles on crystal solids

5

