

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Biosensors								
Course Code	KİM658		Couse Level		Third Cycle (Doctorate Degree)				
ECTS Credit 8	Workload	200 (Hours)	Theory	/	3	Practice	0	Laboratory	0
Objectives of the Course The aim of this course is to ga			gain ex	tensiv	e informati	ion about bios	ensors and t	heir production.	
Course Content Calorimetric biosensors, Poter biosensors, Immunosensors.				etric a	and ampero	ometric bioser	nsors, Optica	l biosensors, Piez	o-electric
Work Placement N/A									
Planned Learning Activities and Teaching Methods			Explar	nation	(Presentat	tion), Discussi	on, Case Stu	udy, Individual Stu	dy
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	20	
Final Examination	1	35	
Assignment	3	45	

Recommended or Required Reading

1	Instructor	notes
· · ·	mouración	110100

2 Biochromatography, MA Vijayalakshmi, Taylor and Francis, 2002.

Week	Weekly Detailed Cour	se Contents
2	Theoretical	What is the biosensors?
3	Theoretical	Types of Biosensors
4	Theoretical	Calorimetric biosensors
5	Theoretical	Application of Calorimetric biosensors
6	Theoretical	Potentiometric and amperometric biosensors
7	Theoretical	Application of Potentiometric and amperometric biosensors
8	Theoretical	Optical biosensors
9	Theoretical	Application of Optic Biosensors
11	Intermediate Exam	Midterm exam
12	Theoretical	Piezo-electric biosensors
13	Theoretical	Application of Piezo-electric biosensors
14	Theoretical	Immunosensors
15	Theoretical	Application of immunosensors
16	Final Exam	Final Exam

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	0	3	42		
Assignment	6	0	12	72		
Midterm Examination	1	30	2	32		
Final Examination	1	52	2	54		
	200					
[Total Workload (Hours) / 25*] = ECTS 8						
*25 hour workload is accepted as 1 FCTS						

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

- 1 Learns the basic principles of biosensor preparation.
- 2 Knows the types of biosensors.

3	Learn	s the	basic	princip	oles of b	bioser	nsor	construction.	

- 4 to have knowledge about electrochemical biosensors
- 5 to have knowledge about optical biosensors

Programme Outcomes (Chemistry Doctorate)

Flogi	anime outcomes (chemistry boctorate)
1	Depending on the master degree competences, develops, insights and innovates current and advanced knowledge and/or research in proficiency level.
2	Gains high skill levels in using research methods in the field of his/her study.
3	Comprehends the interaction between disciplines related to his/her field. Reaches to original results using his/her expertise in order to analyze, synthesize and evaluate new and complicated ideas.
4	Enlarges the boundaries of his/her field of knowledge by publishing at least one research paper in national and/or international peer-reviewed journals.
5	Defends his/her original opinions related to his/her field before authority and communicates effectively illustrating his/her competence.
6	May communicate and debate written, orally and visually in European Language Portfolio level C1.
7	Follows the developments in computer software and information and communication technologies developed for his/her research area and uses these in order to solve research problems.
8	Collaborates for scientific research with national and international research teams.
9	Contributes to the course of creation and maintenance of knowledge based society and by introducing the scientific, social and cultural developments to the society he/she is living in.

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	5	4	5	5
P3	3	3	3	3	3
P4	3	3	3	3	3
P7	4	3	3	3	3

