

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Advanced Bio	chemical Ana	ysis						
Course Code	KİM659		Couse Level		Third Cycle (Doctorate Degree)				
ECTS Credit 10	Workload	255 (Hours)	Theory	/	3	Practice	0	Laboratory	0
Objectives of the Course This course discusses the basic analytical principles, analytical methods and application of analytic methods in biochemical investigations.						lytic			
Course Content	Basic analytic spectroscopic		or calc	ulatior	n in analys	is, chromatogr	aphic, electr	ophoretic and	
Work Placement N/A									
Planned Learning Activities and Teaching Methods			Explan	nation	(Presentat	tion), Discussio	on, Individua	al Study	
Name of Lecturer(s) Prof. Murat UYGUN									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	20	
Final Examination	1	60	
Assignment	2	20	

Recommended or Required Reading

- Principles of instrumental analysis. Skoog DA., Holler FJ., Nieman TA. 1998, Bilim Publication, Ankara. 1
- 2 Bioanalytical Chemistry. Suzan R. Mikkelsen, Edward Corton, 2004, Wiley - Interscience, ISBN-0- 471-54447-7

Week	Weekly Detailed Course Contents				
1	Theoretical	Introduction: Role of analytical chemistry in biochemical research.			
2	Theoretical	Basic analytical principles.			
3	Theoretical	Classification of quantitative analytical methods.			
4	Theoretical	Error analysis.			
5	Theoretical	Separation and extraction methods.			
6	Theoretical	Chromatographic techniques.			
7	Theoretical	Electrophoretic techniques.			
8	Theoretical	Theory of spectroscopic methods.			
9	Theoretical	UV-VIS spectroscopy			
10	Theoretical	NMR, IR and their use in biochemical research.			
11	Theoretical	Immunochemical techniques.			
12	Theoretical	Mass spectroscopy and MALDI-MS			
13	Theoretical	Examples to applications.			
14	Theoretical	Student presentations			
15	Theoretical	Student presentations			
16	Final Exam	Final Exam			

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	14	0	3	42	
Assignment	7	20	0	140	
Quiz	4	4	2	24	
Midterm Examination	1	20	2	22	
Final Examination	1	25	2	27	
Total Workload (Hours)					
[Total Workload (Hours) / 25*] = ECTS					
*25 hour workload is accepted as 1 ECTS					

	una a li a un	E
		FOIII

Learning Outcomes					
1	To learn the techniques which are used in biochemical analysis.				
2	To learn the applications of techniques which are used in biochemical analysis.				
3	To learn the electrophoretic techniques				
4	To learn the spectroscopic techniques				
5	To learn the chromatographic techniques				

Programme Outcomes (Chemistry Doctorate)

1	Depending on the master degree competences, develops, insights and innovates current and advanced knowledge and/or research in proficiency level.
2	Gains high skill levels in using research methods in the field of his/her study.
3	Comprehends the interaction between disciplines related to his/her field. Reaches to original results using his/her expertise in order to analyze, synthesize and evaluate new and complicated ideas.
4	Enlarges the boundaries of his/her field of knowledge by publishing at least one research paper in national and/or international peer-reviewed journals.
5	Defends his/her original opinions related to his/her field before authority and communicates effectively illustrating his/her competence.
6	May communicate and debate written, orally and visually in European Language Portfolio level C1.
7	Follows the developments in computer software and information and communication technologies developed for his/her research area and uses these in order to solve research problems.
8	Collaborates for scientific research with national and international research teams.
9	Contributes to the course of creation and maintenance of knowledge based society and by introducing the scientific, social and cultural developments to the society he/she is living in.

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	5			
P3	5	5			
P4		5	5	5	5
P5		5	5	5	5
P6		5	5	5	5

