

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Micro-Nano Motors, Theories and Applications							
Course Code	KİM670		Couse Leve	I	Third Cycle (Doctorate Degree)			
ECTS Credit 8	Workload	200 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course The aim of the course is to provide students with a working knowledge of the principles of operation, physical structures, methods of fabrication, properties and applications of Micro- and Nano-motors.								
Course Content Synthesis of micro / nano motors and comparison with natural molecular machines. Micro / nano motor synthesis methods and characterization. Micro / nano motor types. Movement and control of micro / nano motors. Examples of applications of micro / nano motors.				o motor				
Work Placement	N/A							
Planned Learning Activities and Teaching Methods			Explanation	(Presenta	tion), Discussi	on, Case St	udy, Individual Stu	dy
Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Midterm Examination	1	20
Final Examination	1	35
Assignment	3	45

Recommended or Required Reading

1 Lecture notes

Week	Weekly Detailed Co	rse Contents					
1	Theoretical	Introduction to micro / nano science and nanotechnology. Natural micro / nano materials.					
2	Theoretical	Micro / nano electromechanical systems					
3	Theoretical	Protein and DNA based natural molecular machines					
4	Theoretical	Micro / nano motor design and synthesis					
5	Theoretical	Characterization of micro / nano motors					
6	Theoretical	Nanowires					
7	Theoretical	Tubular motors					
8	Theoretical	Janus particles					
9	Theoretical	Examples of other micro / nano motor types					
10	Theoretical	Midterm exam					
11	Theoretical	Movement of micro / nano motors					
12	Theoretical	Directing of micro / nano motors					
13	Theoretical	Medical applications of micro / nano motors					
14	Theoretical	Environmental applications of micro / nano motors					
15	Theoretical	Use of micro / nano motors in energy and communication technologies					
16	Theoretical	Final exam					

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	0	3	42
Assignment	7	0	10	70
Midterm Examination	1	34	2	36
Final Examination	1	50	2	52
	200			
[Total Workload (Hours) / 25*] = ECTS				
*25 hour workload is accepted as 1 ECTS				

Learr	Learning Outcomes						
1	To have knowledge about the synthesis and characterization of micro / nano motors.						
2	To have knowledge of micro / nano motor types, motion and control features.						
3	Having knowledge about the energy applications of micro / nano motors.						
4	Having knowledge about the medical applications of micro / nano motors.						
5	Having knowledge about the environmental applications of micro / nano motors.						

Programme Outcomes (Chemistry Doctorate)

ad advanced knowledge and/or
nd advanced knowledge and/or
I results using his/her expertise in
per in national and/or international
effectively illustrating his/her
vel C1.
logies developed for his/her
ntroducing the scientific, social and

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	4	4	4	4	4
P3	4	3	3	3	3
P5	4	4	4	4	4
P7	3	3	3	3	3

