

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Simulation Technique						
Course Code	ZTM521	Couse Lev	evel Second Cycle (Master's Degree)				
ECTS Credit 8	Workload 200 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course	dies conduc ney will gain			al Mechani	ization will provide		
Course Content Linear and non-linear models. multiple regression analysis. Ap							gle and
Work Placement	N/A						
Planned Learning Activities	Explanation	n (Presenta	tion), Discussio	n, Individua	al Study, Problem	Solving	
Name of Lecturer(s)							

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	40			
Final Examination	1	60			

Recommended or Required Reading

Discrete-Event System Simulation, J.Banks, J.S.Carson, B.L.Nelson, Prentice-Hall Unternational Series, New Jersey, 1999. ISBN:0-13-217449-9. Simulation modeling and analysis / Averill M. Law, W. David Kelton, New York: McGraw-Hill, c1982. ISBN: 0070366969

Week	Weekly Detailed Cour	se Contents
1	Theoretical	Mathematical Modeling and Its Importance
2	Theoretical	Mathematical modeling stages
3	Theoretical	Mathematical modeling stages
4	Theoretical	Linear Models
5	Theoretical	Linear Models
6	Theoretical	Linear Models
7	Theoretical	Linear Models
8	Intermediate Exam	midterm exam
9	Theoretical	Nonlinear Models
10	Theoretical	Nonlinear Models
11	Theoretical	Nonlinear Models
12	Theoretical	Model Selection and Selection Criteria
13	Theoretical	Determination of the model and the model with the variables to Participate
14	Theoretical	Comparison of Model and Experimental Results
15	Theoretical	Mathematical Model for Developing the Field of Agricultural Mechanization, Other Tools and Methods that can be used
16	Final Exam	final exam

Workload Calculation								
Activity	Quantity	Preparation	Duration	Total Workload				
Lecture - Theory	14	2	2	56				
Lecture - Practice 14		0	2	28				
Assignment	14	0	2	28				
Term Project	2	0	22	44				
Midterm Examination	1	20	2	22				

Final Examination	1		20	2	22
Total Workload (Hours)					200
			[Total Workload (Hours) / 25*] = ECTS	8
*25 hour workload is accepted as 1 ECTS					

Learn	ing Outcomes	
1	To define a system or process	
2	Variables in a system or process to define an effective	
3	To examine relationships between variables	
4	Trials of a system or process execution	
5	Mathematical Model of learning to achieve	
6	Learning more than one approach to model developmen	nt
7	The best model selection and interpretation of the mathe	ematical model of the form
8	Mathematical model test	

Progr	amme Outcomes (Agricultural Machinery Master)						
1	Identification, formulation and solving the problems in the field of Agricultural Machinery						
2	The ability to use modern engineering tools and techniques						
3	The ability to use the information, which is obtained by following the scientific and technological developments, in the academic life and practice.						
4	The ability to evaluate multi-faced relationship between them by understanding interaction among agricultural technology, soil, plants and animals						
5	Professionalism and ethical responsibility						
6	The ability to work in disciplinary and multi-disciplinary teams						
7	The ability to communicate effectively						
8	The ability to do research for accessing information and to use data base and other resources						
9	The ability to do analyze and interpret the experimental results and the design of experiment						
10	The ability to identify and interpret knowledge of current professional issues and events						
11	The ability to get aware the universal and social effects of engineering solutions and applications						
12	Accordance with the requirements of science and technology, ability to use scientific knowledge creative						

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High L1 L2 L3 L4 L5 L6 L7 L8

	LI	LZ	LS	L4	LO	LO	L/	LO
P1	5	5				5		
P2	5	5	3	5				
P4	5	5						
P8	5	3	5	4				
P9	5	3					5	5
P10					5		3	
P11	3							

