

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Design of Instruments and Machines in Soil Working							
Course Code		ZTM532		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	8	Workload	206 (Hours)	Theory	Theory 3 P		0	Laboratory	0
give students t parameters of the soil and the		theory and co moldboard pl e main factors secondary till	nstruction of oughs and d s which affec lage tools, h	tillage mad isk ploughs t the design arrows and	chines. With the s, second, they n conditions. B	is course, stude learn the effe sesides, stude	chanics" in tillage dents first learn o ects of these mad ents will learn des s will comprehen	lesign chines in ign	
Course Content			f Disk Plough	, Theory and	construction	on of Harrow a		ooard Plough, The Theory and cons	
Work Placement N/A									
Planned Learning Activities a		and Teaching	Methods	Explanation Study, Prob	`	, ,	on, Project Ba	ased Study, Indivi	idual
Name of Lecturer(s)									

Assessment Methods and Criteria								
Method	Quantity	Percentage (%)						
Midterm Examination		1	40					
Final Examination		1	60					

Reco	mmended or Required Reading
1	Agricultural Machines, Theory and Construction. 1972. H. Bernacki, J. Haman, Cz. Kanafojski. Warsaw, Poland,
2	Toprak İşleme Sistemleri ve Doğrudan Ekim Makinası Konstrüksiyonu. 2005. Önal, İ., Ege Üniversitesi, Ziraat Fakültesi Yayın No. 564, İzmir.
3	Toprak İşleme Makinaları. 2002. Keçecioğlu, G., Gülsoylu, E., Ege Üniversitesi, Ziraat Fakültesi Yayı

Week	Weekly Detailed Cour	se Contents
1	Theoretical	"Soil Mechanics" in Tillage
2	Theoretical	Soil Tillage Systems
3	Theoretical	Theory and construction of Moldboard Plough
4	Theoretical	Theory and construction of Moldboard Plough
5	Theoretical	Theory and construction of Disk Plough
6	Theoretical	Theory and construction of Disk Plough
7	Intermediate Exam	Midterm Exam
8	Theoretical	Theory and construction of Disk Harrows
9	Theoretical	Theory and construction of Harrows
10	Theoretical	Theory and construction of Cultivators
11	Theoretical	Construction and Design Parameters of Rotary Tillers
12	Theoretical	Theory and construction of Rotavator
13	Theoretical	Theory and construction of Rotary Tiller
14	Theoretical	Conservation Tillage Systems
15	Theoretical	"No-till" Planting systems
16	Final Exam	Final Exam

Workload Calculation							
Activity	Quantity	Preparation	Duration	Total Workload			
Lecture - Theory	14	3	2	70			
Lecture - Practice	14	2	2	56			
Assignment	14	0	2	28			
Midterm Examination	1	25	1	26			

Final Examination	1		25	1	26	
			To	otal Workload (Hours)	206	
[Total Workload (Hours) / 25*] = ECTS				8		
*25 hour workload is accepted as 1 ECTS						

Learn	ing Outcomes		
1	To learn the importance of "Soil Mechanics" in Tillage		
2	To learn desing parameters of tillage machines		
3	To learn the theory and constructions of tillage machin	nes	
4	To learn energy efficient sustainable tillage methods		
5	To learn "No-till" systems		

_							
Progr	amme Outcomes (Agricultural Machinery Master)						
1	Identification, formulation and solving the problems in the field of Agricultural Machinery						
2	The ability to use modern engineering tools and techniques						
3	The ability to use the information, which is obtained by following the scientific and technological developments, in the academic life and practice.						
4	The ability to evaluate multi-faced relationship between them by understanding interaction among agricultural technology, soil, plants and animals						
5	Professionalism and ethical responsibility						
6	The ability to work in disciplinary and multi-disciplinary teams						
7	The ability to communicate effectively						
8	The ability to do research for accessing information and to use data base and other resources						
9	The ability to do analyze and interpret the experimental results and the design of experiment						
10	The ability to identify and interpret knowledge of current professional issues and events						
11	The ability to get aware the universal and social effects of engineering solutions and applications						
12	Accordance with the requirements of science and technology, ability to use scientific knowledge creative						

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	5	5	5	5
P2	2		4	4	4
P3	5	2	4	5	5
P4	4	3	3	5	5
P5	2	5	4	5	5
P6	5	2	2	5	5
P7				4	5
P8	2	3	3	3	3
P9	4	4	4	4	4
P10	4	2	4	5	5
P11	5	5	5	5	5
P12	4	4	4	4	4

