

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Modeling and Analysis in Agriicultural Engineering II							
Course Code	ZTM542		Couse Level Sec		Second Cycle (Master's Degree)			
ECTS Credit 7	Workload	175 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course To Provide Students Information on Modeling, Analysis and simulation in the Subjects of Engineering Systems.					eering			
Course Content Modeling Dynamic Systems with Ordinary Differential Equations. Analytical and Numerical Solutions Differential Equations, Introduction to State Variable Methods of System Analysis. Simulation and Analysis of dynamic system. MATLAB will be used Throughout the Course for Modeling and Numerical Analysis.				nd				
Work Placement	N/A							
Planned Learning Activities	and Teaching	Methods	Explanation	(Presenta	tion), Individua	al Study, Pro	blem Solving	
Name of Lecturer(s)								

Assessment Methods and Criteria				
Method	Quantity	Percentage (%)		
Midterm Examination	1	40		
Final Examination	1	60		

Recommended or Required Reading

- 1 Modeling and Analysis of Dynamic Systems. Charles M. Close, D.H. Frederick, J.C. Newell
- 2 Modeling and Dynamics of Engineering Systems. Yücel ERCAN

Week	Weekly Detailed Course Contents				
1	Theoretical	Introduction to Engineering System Modeling and Analysis			
2	Theoretical	Modeling of Mechanical Systems			
3	Theoretical	Modeling of Mechanical Systems			
4	Theoretical	Modeling Hydraulic Systems			
5	Theoretical	Modeling Hydraulic Systems			
6	Theoretical	Analytical and Numerical Solution of System Models			
7	Theoretical	Midterm Exam			
8	Theoretical	Analytical and Numerical Solution of System Models			
9	Theoretical	Analytical and Numerical Solution of System Models			
10	Theoretical	Analytical and Numerical Solution of System Models			
11	Theoretical	Analytical and Numerical Solution of System Models			
12	Theoretical	Analytical and Numerical Solution of System Models			
13	Theoretical	Analytical and Numerical Solution of System Models			
14	Final Exam	Final Exam			

Workload Calculation					
Activity	Quantity	Preparation		Duration	Total Workload
Lecture - Theory	14		6	3	126
Assignment	3		5	5	30
Midterm Examination	1		8	2	10
Final Examination	1		7	2	9
Total Workload (Hours) 175					
[Total Workload (Hours) / 25*] = ECTS 7					
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes

- 1 Obtain Mathematical Models of Various Engineering Systems
- 2 Obtain Analytical Solution for Engineering Systems

- Obtain Numerical Solution for Dynamic Systems Using MATLAB Software
 Analyze System Response Using MATLAB Software for This Purpose
 Apply Knowledge of Modeling and Analysis on Various Subjects in Area of Biosystem Engineering .
- Programme Outcomes (Agricultural Machinery Master) Identification, formulation and solving the problems in the field of Agricultural Machinery The ability to use modern engineering tools and techniques The ability to use the information, which is obtained by following the scientific and technological developments, in the 3 academic life and practice. The ability to evaluate multi-faced relationship between them by understanding interaction among agricultural technology, soil, 4 plants and animals 5 Professionalism and ethical responsibility The ability to work in disciplinary and multi-disciplinary teams 6 The ability to communicate effectively 7 The ability to do research for accessing information and to use data base and other resources 8 9 The ability to do analyze and interpret the experimental results and the design of experiment 10 The ability to identify and interpret knowledge of current professional issues and events The ability to get aware the universal and social effects of engineering solutions and applications 11 12 Accordance with the requirements of science and technology, ability to use scientific knowledge creative

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L3
P1	5	
P3	5	4
P4	4	4
P5	5	4
P6	5	4
P7	5	4
P8		4
P11	5	

