

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Modeling and Analysis in Agricultural Engineering							
Course Code		ZTM547		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	8	Workload	200 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of t	he Course	To Provide St Systems.	udents İnform	ation on Mod	eling, Ana	lysis and simul	ation in the	Subjects of Engine	eering
Course Content		Differential E	quations, Intro	duction to Sta	ate Variabl	e Methods of S	System Anal	nd Numerical Solu ysis. Simulation ar r Modeling and Nu	nd
	nt								
Work Placeme	110	N/A							
Planned Learn			Methods	Explanation	(Presenta	tion), Demonst	ration, Prob	lem Solving	

Assessment Methods and Criteria

Method	Quantity	Percentage (%)		
Midterm Examination	1	40		
Final Examination	1	60		

Recommended or Required Reading

1 Modeling and Analysis of Dynamic Systems. Charles M. Close, D.H. Frederick, J.C. Newell

Week	Weekly Detailed Co	urse Contents
1	Theoretical	Introduction to Engineering System Modeling and Analysis
2	Theoretical	Modeling of Mechanical Systems
3	Theoretical	Modeling of Mechanical Systems
4	Theoretical	Modeling Hydraulic Systems
5	Theoretical	Modeling Hydraulic Systems
6	Theoretical	Analytical and Numerical Solution of System Models
7	Theoretical	Midterm Exam
8	Theoretical	Analytical and Numerical Solution of System Models
9	Theoretical	Analytical and Numerical Solution of System Models
10	Theoretical	Analytical and Numerical Solution of System Models
11	Theoretical	Analytical and Numerical Solution of System Models
12	Theoretical	Analytical and Numerical Solution of System Models
13	Theoretical	Analytical and Numerical Solution of System Models
14	Final Exam	Final Exam

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	4	3	98
Assignment	6	10	5	90
Midterm Examination	1	3	3	6
Final Examination	1	3	3	6
Total Workload (Hours)				
[Total Workload (Hours) / 25*] = ECTS 8				

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

1	Obtain Mathematical Models of Various Engineering Systems
2	Obtain Analytical Solution for Engineering Systems
3	Obtain Numerical Solution for Dynamic Systems Using MATLAB Software

4	Analyze System Response Using MATLAB Software for This Purpose			
5	Apply Knowledge of Modeling and Analysis on Various Subjects in Area of Biosystem Engineering .			
Programme Outcomes (Agricultural Machinery Master)				
1	Identification, formulation and solving the problems in the field of Agricultural Machinery			

2	The ability to use modern engineering tools and techniques	
---	--	--

3 The ability to use the information, which is obtained by following the scientific and technological developments, in the academic life and practice.

The ability to evaluate multi-faced relationship between plants and animals	veen them by understanding interaction among agricultural technolo	gy, soil,

5	Professionalism and ethical responsibility
6	The ability to work in disciplinary and multi-disciplinary teams
7	The ability to communicate effectively
8	The ability to do research for accessing information and to use data base and other resources
9	The ability to do analyze and interpret the experimental results and the design of experiment
10	The ability to identify and interpret knowledge of current professional issues and events
	The shifts to not success the successed and enables the standard in solution and successful and in the time.

11 The ability to get aware the universal and social effects of engineering solutions and applications

12 Accordance with the requirements of science and technology, ability to use scientific knowledge creative

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

Contribution of Lear						
	L1	L4				
P2	5	4				
P3	5	5				
P5		5				
P6	5					
P7		4				
P9	5					
P10	5	4				
P11		5				
P12	5					

