

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Sustainable Agriculture Tech			hnologies					
Course Code	ZTM605		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 7	Workload	170 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course The aim of the course, the applicability of sustainable agricultural techniques, superior and weakn and sustainable management of mechanization of agriculture, farm traffic, providing at least the orangement agricultural mechanization techniques to make students aware of the entry.								
Course Content Equipment-machine, proce conservation tillage techniq time, energy and cost requi applicability of cultural proc		lage techniquid cost requir	ues, no-till fai rements, sus	ming techi	niques and sus	stainable farn	ning techniques i	n terms of
Work Placement N/A								
Planned Learning Activities and Teaching Methods		lethods	Explanation Problem So		tion), Demonst	ration, Discu	ssion, Individual	Study,
Name of Lecturer(s)								

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	40			
Final Examination	1	60			

R	Recommended or Required Reading						
	1	Ekim, Bakım, Gübreleme Makinaları. 1995. Önal, İ., E.Ü. Ziraat Fak. Yayınları, 490, Bornova-İZMİR					
	2	Farm Power and Machinery Management. 1977. Hunt D., Iowa State University Pres, IOWA					
	3	Değişik Toprak İşleme ve Pamuk Ekim Tekniklerini Aydın Yöresi Koşullarına Uygulama Olanakları. 1999. Yalçın, İ., Doktora Tezi, Bornova-İZMİR					

Week	Weekly Detailed Cour	rse Contents				
1	Theoretical	Introduction (Course disposition, Tool-machine, process, system definitions)				
	Preparation Work	Research				
2	Theoretical	Comparison with the basic principles of sustainable agriculture and farming techniques				
	Preparation Work	Research				
3	Theoretical	Conservation tillage techniques and tools used in machines (reduced tillage, no-till planting)				
	Preparation Work	Research				
4	Theoretical	Conservation tillage techniques and tools used in machines (precision tillage, ridge sowing)				
	Preparation Work	Research				
5	Theoretical	Techniques and tools used tillage machines				
	Preparation Work	Research				
6	Theoretical	Direct sowing machines and equipments				
	Preparation Work	Research				
7	Theoretical	Direct sowing machines and equipments				
	Preparation Work	Research				
8	Intermediate Exam	Midterm exam				
9	Theoretical	Time requirement of sustainable farming techniques				
	Preparation Work	Research				
10	Theoretical	Labor requirement of sustainable farming techniques				
	Preparation Work	Research				
11	Theoretical	Sustainable farming techniques and the amount of energy requirement				
	Preparation Work	Research				
12	Theoretical	Methods of providing input multiple output with a minimum of mechanization				
	Preparation Work	Research				
13	Theoretical	Cultural practices in sustainable agriculture (agricultural control, erosion control etc)				
	Preparation Work	Research				

14	Theoretical	The applicability of sustainable agriculture techniques				
	Preparation Work	Research				
15	Theoretical	The applicability of sustainable agriculture techniques				
	Preparation Work	Research				
16	Final Exam	Final exam				

Workload Calculation				
Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	3	2	70
Lecture - Practice	14	0	2	28
Assignment	14	0	2	28
Term Project	1	0	20	20
Midterm Examination	1	10	2	12
Final Examination	1	10	2	12
Total Workload (Hours)				
[Total Workload (Hours) / 25*] = ECTS				
*25 hour workload is accepted as 1 ECTS				

Learning Outcomes

- Knowledge about sustainable agriculture 1
- 2 Sustainable farming systems analysis
- 3 Knowledge about preventive and no-till farming techniques
- 4 Sustainable farming techniques to make the choice of appropriate mechanization
- 5 Sustainable farming techniques to make the choice of appropriate mechanization

Programme Outcomes (Agricultural Machinery Doctorate)

- Identification, formulation and solving the problems in the field of Agricultural Machinery
- The ability to use modern engineering tools and techniques
- The ability to use the information, which is obtained by following the scientific and technological developments, in the 3 academic life and practice.
- The ability to evaluate multi-faced relationship between them by understanding interaction among agricultural technology, soil, 4 plants and animals
- Professionalism and ethical responsibility 5
- The ability to work in disciplinary and multi-disciplinary teams 6
- 7 The ability to communicate effectively
- 8 The ability to do research for accessing information and to use data base and other resources
- 9 The ability to do analyze and interpret the experimental results and the design of experiment
- 10 The ability to identify and interpret knowledge of current professional issues and events
- 11 The ability to get aware the universal and social effects of engineering solutions and applications
- 12 Accordance with the requirements of science and technology, ability to use scientific knowledge creative

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4
P1	5	5	5	5
P2	5	5	5	5
P3	4	4	4	4
P4	5	5	5	5
P5	4	4	4	4
P6	4	4	4	4
P8	5	5	5	5
P9	5	5	5	5
P10	5	5	5	5
P11	5	5	5	5
P12	5	5	5	5

