

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Principles of Agricultural Machinery Construction							
Course Code		ZTM609		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 7		Workload	177 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course						lesign agricultu amples of topic		ery. To this end, fu	rther
Course Content		Machinery use						l angle measurem , symbols, geome	
		connection, m	anufacturing f	formal study of	ons with st of machine	e parts to be dra	awn, Picture	e links, and other f es of the construct filling conditions.	orms of
Work Placeme	nt	connection, m	anufacturing f	formal study of	ons with st of machine	e parts to be dra	awn, Picture	es of the construct	orms of
		connection, m sketch, Const	anufacturing f ruction, consti	formal study or ruction and as	ons with st of machine ssembly d (Presenta	e parts to be dra rawing and part tion), Discussio	awn, Picture s list parts	es of the construct	orms of ion

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	40	
Final Examination		1	60

Recommended or Required Reading

1	Makine Elemanları ve Konstrüksiyon Örnekleri. Bablık F,
2	Makine Meslek Resmi Cilt 1 ve 2, Şen, İ.Z., Özçilingir, N., (2000), İstanbul.
3	Teknik resim,Cilt 2.Bağcı, M., 2003

Week	Weekly Detailed Cours	Contents						
1	Theoretical	urface states, criteria, and demonstration of symbols						
2	Theoretical	plerances, length and angle measurements						
3	Theoretical	ISO tolerance and exercise plan, machinery manufacturing tolerances and exercises						
4	Theoretical	Geometric tolerances, symbols						
5	Theoretical	Screws, bolts, studs and joints						
6	Theoretical	Wedge joins						
7	Theoretical	welded joints						
8	Intermediate Exam	Midterm Exam						
9	Theoretical	Manufacturing of machine parts to be drawn image analysis, surface models						
10	Theoretical	Pictures of the construction drawing and track construction						
11	Theoretical	Assembly drawings principles						
12	Theoretical	list numbering and charging principles						
13	Theoretical	System is a simple piece of construction and construction photos						
14	Theoretical	Assembly drawing applications						
15	Theoretical	Assembly drawing applications						
16	Final Exam	final exam						

Workload Calculation

Activity	Quantity Preparation		Duration	Total Workload				
Lecture - Theory	14	2	3	70				
Assignment	14	0	2	28				
Term Project	1		25	25				
Reading	14	0	2	28				
Midterm Examination	1	12	1	13				

Final Examination	1		12	1	13	
Total Workload (Hours)						
			[Total Workload (Hours) / 25*] = ECTS	7	
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes

1	Engineering Design to solve the problems encountered. (Design Process, Decision Making, Computer Aided Design, Materials Selection, Economics,)
2	A-axis, two-axis and three-axis to analyze stress, according to the United states of strain to make lightweight construction and sizing.
3	Engineering material, surface quality, clutch friction and wear issues.
4	Selectable mechanical manufacturing and operations.
5	Under static and variable load strain, fracture hypothesis states of continuous grip strength.
6	Lightweight construction and to produce applications.
7	Combined strength of the sample solutions to make states
8	A front end loader, bucket, or a single-axle farm truck reverse case, it is important organs of the sizing of business
9	Ergonomics-related vibration, sound and noise control can make.
10	Machinery Safety Directive able to grasp and application of a machine instruction manual sample preparation. (2006/42/AT).

Programme Outcomes (Agricultural Machinery Doctorate)

1	Identification, formulation and solving the problems in the field of Agricultural Machinery
2	The ability to use modern engineering tools and techniques
3	The ability to use the information, which is obtained by following the scientific and technological developments, in the academic life and practice.
4	The ability to evaluate multi-faced relationship between them by understanding interaction among agricultural technology, soil plants and animals
5	Professionalism and ethical responsibility
6	The ability to work in disciplinary and multi-disciplinary teams
7	The ability to communicate effectively
8	The ability to do research for accessing information and to use data base and other resources
9	The ability to do analyze and interpret the experimental results and the design of experiment
10	The ability to identify and interpret knowledge of current professional issues and events
11	The ability to get aware the universal and social effects of engineering solutions and applications
12	Accordance with the requirements of science and technology, ability to use scientific knowledge creative

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

			•			•				
	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10
P1	1							5	5	
P2	5					4				
P3	4									4
P7	4									4
P8	4			4						
P9		4		4		4				
P10	5									
P11	5	4	5	5	5	5	5	5	5	5
P12	5					4				

