

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Advanced Manufacturing Te			echniques in Agricultural Machinery					
Course Code	ZTM615		Couse Level		Third Cycle (Doctorate Degree)			
ECTS Credit 7	7 Workload 171 (Hours)		Theory	3	Practice	0	Laboratory	0
Objectives of the Course	The purpose of this course is to teach advanced manufacturing methods used in farm machinery and discussion of developments in this field.							
Course Content	water jet mac	hining, chemic ing, plasma ar	cal machining c machining,	, electro-cl explosive	hemical machi s, forming, pov	ning, electro-	ng, powder jet ma discharge machir gy, advanced sur	ning, laser
Work Placement N/A								
Planned Learning Activities and Teaching Methods		Methods	Explanation	(Presenta	tion)			
Name of Lecturer(s)								

Assessment Methods and Criteria					
Method	Quantity	Percentage (%)			
Midterm Examination	1	40			
Final Examination	1	60			

Reco	Recommended or Required Reading							
1	 "Manufacturing Engin. & Technology". Kalpakjian, S., Schimid, S., 2001. Prentice Hall, 4 Th. Edi. "Advanced Machining Technology Handbook", Brown, J., 1998. McGraw-Hill, NY 							
2								
3	"Materials and Processes in Manufacturing", DeGarmo, E.P., Black, J.T., Kohser, R.A., 1997.Prentice-Hall, 8 Th. Edition, ISBN: 0-13-261371-9							

Week	Weekly Detailed Course Contents				
1	Theoretical	Classification of advanced manufacturing methods			
2	Theoretical	Classification of advanced manufacturing methods			
3	Theoretical	Dust jet machining, principles, types and applications			
4	Theoretical	Water jet machining, principles, types and applications			
5	Theoretical	Chemical processing, principles, types and applications			
6	Theoretical	Electro-chemical processing, principles, types and applications			
7	Intermediate Exam	Midterm Exam			
8	Theoretical	Process with an electro-erosion , principles, and applications			
9	Theoretical	Processing with the laser beam , principles, types and applications			
10	Theoretical	Electron beam processing, principles, types and applications.			
11	Theoretical	Plasma arc process, principles, and applications			
12	Theoretical	Forming y explosives, principles, types and applications			
13	Theoretical	Powder metallurgy, principles, types and applications			
14	Theoretical	Advanced surface treatment, principles, types and applications.			
15	Theoretical	Other methods			
16	Final Exam	Final Exam			

Workload Calculation							
Activity	Quantity Preparation		Duration	Total Workload			
Lecture - Theory	14	2	2	56			
Lecture - Practice	14	1	2	42			
Assignment	1	0	45	45			
Reading	1	0	20	20			
Midterm Examination	1	2	2	4			

Final Examination	1		2	2	4
Total Workload (Hours)					171
[Total Workload (Hours) / 25*] = ECTS					7
*25 hour workload is accepted as 1 ECTS					

Learn	Learning Outcomes						
1	Knowledge of basic information about advanced manufacturing methods						
2	Ultrasonic processing, principles, knowledge of basic information about the types and applications						
3	Processing with a jet of water jet and dust , principles, basic information about the types and applications						
4	Chemical, electro-chemical process, principles, knowledge about the types and applications						
5	With an electro-erosion process, principles, basic information about the types and applications						
6	Laser and electron beam processing, principles, basic information about the types and applications						
7	Plasma arc machining, principles, information about the types and applications						
8	Advanced surface treatment principles, knowledge of basic information about the types and applications						

Progr	amme Outcomes (Agricultural Machinery Doctorate)						
1	Identification, formulation and solving the problems in the field of Agricultural Machinery						
2	The ability to use modern engineering tools and techniques						
3	e ability to use the information, which is obtained by following the scientific and technological developments, in the idemic life and practice.						
4	The ability to evaluate multi-faced relationship between them by understanding interaction among agricultural technology, soil, plants and animals						
5	Professionalism and ethical responsibility						
6	The ability to work in disciplinary and multi-disciplinary teams						
7	The ability to communicate effectively						
8	The ability to do research for accessing information and to use data base and other resources						
9	The ability to do analyze and interpret the experimental results and the design of experiment						
10	The ability to identify and interpret knowledge of current professional issues and events						
11	The ability to get aware the universal and social effects of engineering solutions and applications						
12	2 Accordance with the requirements of science and technology, ability to use scientific knowledge creative						

Contribution of Learning Outcomes to Programme Outcomes1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very HighL1L2L3L4L5L6L7L8P1444444

P1	4	4	4	4	4	4	4	4
P2	4	4	4	4	4	4	4	4
P3	4	4	4	4	4	4		4
P4	4	4	4	4	4	4	4	4
P5	4	4	4	4	4	4	4	4
P6	4	4	4	4	4	4	4	4
P7	4	4	4	4	4	4	4	4
P8	4	4	4	4	4	4		4
P9	4	4	4	4	4	4	4	4
P10	4	4	4	4	4	4	4	4
P11	4	4	4	4	4	4	4	4
P12	4		4	4	4	4	4	4

