

## AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title                                     |   | Design of Conveying Systems Used in Agriculture |                            |                                                                                                                     |           |                                |                    |                                                                   |   |
|--------------------------------------------------|---|-------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------|--------------------|-------------------------------------------------------------------|---|
| Course Code                                      |   | ZTM620                                          |                            | Couse Level                                                                                                         |           | Third Cycle (Doctorate Degree) |                    |                                                                   |   |
| ECTS Credit                                      | 7 | Workload                                        | 172 (Hours)                | Theory                                                                                                              | 3         | Practice                       | 0                  | Laboratory                                                        | 0 |
|                                                  |   |                                                 |                            | o provide conveying characteristics of agricultural materials, conveying n, design principles of conveying machines |           |                                |                    |                                                                   |   |
| Course Content                                   |   | parameters, c                                   | lassification o            | f conveying n                                                                                                       | nachines, | selection criteria             | of the cor         | ing machine desigr<br>nveyors, agricultura<br>relation, design pr | l |
| Work Placement N/A                               |   |                                                 |                            |                                                                                                                     |           |                                |                    |                                                                   |   |
| Planned Learning Activities and Teaching Methods |   |                                                 | Explanation<br>Study, Prob |                                                                                                                     |           | ly, Project                    | Based Study, Indiv | idual                                                             |   |
| Name of Lecturer(s)                              |   |                                                 |                            |                                                                                                                     |           |                                |                    |                                                                   |   |

| Assessment Methods and Criteria |          |                |  |  |  |  |
|---------------------------------|----------|----------------|--|--|--|--|
| Method                          | Quantity | Percentage (%) |  |  |  |  |
| Midterm Examination             | 1        | 40             |  |  |  |  |
| Final Examination               | 1        | 60             |  |  |  |  |

## **Recommended or Required Reading**

- 1 Taşıma ve İletim Tekniği. Deligönül,F., 1989. Ç.Ü.Ziraat Fakültesi Ders Kitabı No:3 Adana
- 2 Taşıma İletim Tekniği. Tunalıgil.B.G., Eker.B., 1985 Ankara Üniversitesi Ziraat Fakültesi Yayınları 962. Ankara

| Week | <b>Weekly Detailed Cour</b> | se Contents                                                       |  |  |  |
|------|-----------------------------|-------------------------------------------------------------------|--|--|--|
| 1    | Theoretical                 | The importance of conveying processes and machines in agriculture |  |  |  |
| 2    | Theoretical                 | Conveying machine design parameters                               |  |  |  |
| 3    | Theoretical                 | Classification of conveying machines                              |  |  |  |
| 4    | Theoretical                 | Selection criteria of the conveyors                               |  |  |  |
| 5    | Theoretical                 | Agricultural material-organs of conveyor relation                 |  |  |  |
| 6    | Theoretical                 | Organ types and specifications of conveyors                       |  |  |  |
| 7    | Theoretical                 | Constructional properties of conveyors                            |  |  |  |
| 8    | Intermediate Exam           | Term exam                                                         |  |  |  |
| 9    | Theoretical                 | Capacity of conveyors                                             |  |  |  |
| 10   | Theoretical                 | Power requirements of conveyors                                   |  |  |  |
| 11   | Theoretical                 | Design principles of steady flow conveyors                        |  |  |  |
| 12   | Theoretical                 | Design principles of steady flow conveyors                        |  |  |  |
| 13   | Theoretical                 | Design principles of discrete flow conveyors                      |  |  |  |
| 14   | Theoretical                 | Design principles of discrete flow conveyors                      |  |  |  |
| 15   | Theoretical                 | Design principles of discrete flow conveyors                      |  |  |  |
| 16   | Final Exam                  | Final exam                                                        |  |  |  |

| Workload Calculation |          |             |          |                |  |  |  |
|----------------------|----------|-------------|----------|----------------|--|--|--|
| Activity             | Quantity | Preparation | Duration | Total Workload |  |  |  |
| Lecture - Theory     | 14       | 3           | 3        | 84             |  |  |  |
| Assignment           | 14       | 0           | 2        | 28             |  |  |  |
| Reading              | 14       | 0           | 2        | 28             |  |  |  |
| Midterm Examination  | 1        | 12          | 1        | 13             |  |  |  |



| Final Examination                       | 1 18 |  | 1  | 19                   |     |  |  |
|-----------------------------------------|------|--|----|----------------------|-----|--|--|
|                                         |      |  | To | tal Workload (Hours) | 172 |  |  |
|                                         | 7    |  |    |                      |     |  |  |
| *25 hour workload is accepted as 1 ECTS |      |  |    |                      |     |  |  |

| Learn | ing Outcomes                                                        |
|-------|---------------------------------------------------------------------|
| 1     | Understanding the importance of conveying machines in agriculture   |
| 2     | Understanding the design principles of conveying machines           |
| 3     | Understanding agricultural material-organs of conveyor relation     |
| 4     | Understanding of capacity and power requirement issues of conveyors |
| 5     | Understanding the design principles of steady flow conveyors        |
| 6     | Understanding the design principles of discrete flow conveyors      |
| 7     | Understanding the test methods of conveyors                         |

| Progr | amme Outcomes (Agricultural Machinery Doctorate)                                                                                                     |  |  |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1     | Identification, formulation and solving the problems in the field of Agricultural Machinery                                                          |  |  |  |  |  |  |
| 2     | The ability to use modern engineering tools and techniques                                                                                           |  |  |  |  |  |  |
| 3     | The ability to use the information, which is obtained by following the scientific and technological developments, in the academic life and practice. |  |  |  |  |  |  |
| 4     | The ability to evaluate multi-faced relationship between them by understanding interaction among agricultural technology, soil, plants and animals   |  |  |  |  |  |  |
| 5     | Professionalism and ethical responsibility                                                                                                           |  |  |  |  |  |  |
| 6     | The ability to work in disciplinary and multi-disciplinary teams                                                                                     |  |  |  |  |  |  |
| 7     | The ability to communicate effectively                                                                                                               |  |  |  |  |  |  |
| 8     | The ability to do research for accessing information and to use data base and other resources                                                        |  |  |  |  |  |  |
| 9     | The ability to do analyze and interpret the experimental results and the design of experiment                                                        |  |  |  |  |  |  |
| 10    | The ability to identify and interpret knowledge of current professional issues and events                                                            |  |  |  |  |  |  |
| 11    | The ability to get aware the universal and social effects of engineering solutions and applications                                                  |  |  |  |  |  |  |
| 12    | Accordance with the requirements of science and technology, ability to use scientific knowledge creative                                             |  |  |  |  |  |  |
|       |                                                                                                                                                      |  |  |  |  |  |  |

## Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

|     | L1 | L2 | L3 | L4 | L5 | L6 | L7 |
|-----|----|----|----|----|----|----|----|
| P1  | 5  | 5  | 5  | 5  | 5  | 5  | 5  |
| P2  | 5  | 5  | 5  | 5  | 5  | 5  | 5  |
| P3  | 5  | 5  | 5  | 5  | 5  | 5  | 5  |
| P4  | 5  | 5  | 5  | 5  | 5  | 5  | 5  |
| P5  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| P6  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| P8  | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
| P9  | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
| P10 | 2  | 2  | 2  | 2  | 2  | 2  | 2  |
| P11 | 4  | 4  | 4  | 4  | 4  | 4  | 4  |
| P12 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |

