

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Water Resources System	Analysis					
Course Code	ZTY536	Couse Level		vel Second Cycle (Master's Degree)			
ECTS Credit 7	Workload 175 (Hours,) Theory	3	Practice	0	Laboratory	0
Objectives of the Course	Teach systems engineering practices in water resources management						
Course Content	Systems analysis concepts, terminology, phases. System approach to solving water resource problems. Nature and objective of and mathematical models for water resource systems. Review of optimization techniques. Linear programming: Classical optimization methods, separable programming. Search techniques. Computer applications, case studies. Simulation methods for design of water resource systems introduced.						
Work Placement	N/A						
Planned Learning Activities	Explanation Study, Prof			on, Project E	Based Study, Indiv	ridual	
Name of Lecturer(s)							

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	40				
Final Examination	1	60				

Recommended or Required Reading

1 Water Resources System Analysis Mohammad Karamouz, Ferenc Szidarovszky and Banafsheh Zahraie

Week	Weekly Detailed Course Contents					
1	Theoretical	Optimization ve decision support systems in water resources				
2	Theoretical	Linear programming				
3	Theoretical	Single and multi-constraint optimization				
4	Theoretical	Optimization and decision under uncertainty				
5	Theoretical	Stochastic processes				
6	Theoretical	Markov chains				
7	Theoretical	Fuzzy logic theory and its application in water resources				
8	Intermediate Exam	MIDTERM EXAM				
9	Theoretical	Water distribution networks and management				
10	Theoretical	Optimization in irrigation systems and water allocation				
11	Theoretical	Optimization with Excel				
12	Theoretical	Statistical models in water resources sistem analysis				
13	Theoretical	Economic analysis in water resources systems				
14	Theoretical	Evaluation in system analysis				
15	Final Exam	FINAL EXAM				

Workload Calculation					
Activity	Quantity	Preparation		Duration	Total Workload
Lecture - Theory	14		8	3	154
Midterm Examination	1		7	2	9
Final Examination	1		10	2	12
	175				
[Total Workload (Hours) / 25*] = ECTS 7					7
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes

- 1 The concept of systems engineering in water resources management
- 2 Operational research in water resources managament

Branches of operational research in water resources management according to the model and programming techniques
Linear and non-linear programming in water resources management
Model approach in water resources system analysis

Programme Outcomes (Agricultural Structures and Irrigation Master)						
1	Ability to use, evaluate and improve the knowledge gained from field of study at an expert level					
2	Ability to reach necessary the knowledge					
3	To able to conduct scientific studies (research) related to the field					
4	Ability to consider academical and ethical values the studies					
5	Ability to improve editing method and evaluate the results of researches					
6	The studies, the ability to reach result and application, develop new approaches					
7	A topic in the field of written, verbally and visually as the ability to express					
8	Effective use of Turkish language and ability to communicate in a foreign language both written and verbal					

$\textbf{Contribution of Learning Outcomes to Programme Outcomes} \ \textit{1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High}$

	L1	L2	L3	L4	L5
P1	4	4	4	4	4
P2	4	4	4	4	4
P3	3	4	4	4	3
P4	2	4	4	4	3
P5	3	4	3	3	3
P6	5	4	3	3 (3
P7	5	4	3	3	3
P8	1	4	3	3	3

